Improving fruit soluble solids content in melon (*Cucumis melo* L.) (reticulatus group) in the Australian production system

Robert Llewellyn Long

Doctor of Philosophy

Plant Sciences Group Primary Industries Research Centre School of Biological and Environmental Science Faculty of Arts Health and Science Central Queensland University Rockhampton Australia

2005

Abstract

Total soluble solids (TSS) is a reliable indicator of melon eating quality, with a minimum standard of 10% recommended. The state of Australian melon production with respect to this quality criterion was considered within seasons, between growing districts and over seasons. It was concluded that improvement in agronomic practice and varietal selection is required to produce sweeter melons. The scientific literature addressing melon physiology and agronomy was summarised, as a background to the work that is required to improve melon production practices in Australia.

The effect of source sink manipulation was assessed for commercially grown and glasshouse grown melon plants. The timing of fruit thinning, pollination scheduling, the application of a growth inhibitor and source biomass removal were assessed in relation to fruit growth and sugar accumulation. Results are interpreted against a model in which fruit rapidly increase in weight until about two weeks before harvest, with sugar accumulation continuing as fruit growth ceases. Thus treatment response is very dependant on timing of application. For example, fruit thinning at 25 days before harvest resulted in further fruit set and increased fruit weight but did not impact on fruit TSS (at 9.8%, control 9.3%), while thinning at 5 days before harvest resulted in a significant (P<0.05) increase in fruit TSS (to 10.8%, control 9.3%) and no increase in fruit weight or number. A cost/ benefit analysis is presented, allowing an estimation of the increase in sale price required to sustain the implementation of fruit thinning.

The effect of irrigation scheduling was also considered with respect to increasing melon yield and quality. To date, recommended practice has been to cause an irrigation deficit close to fruit harvest, with the intent of "drying out" or "stressing" the plant, to "bring on" maturity and increase sugar accumulation. Irrigation trials showed that keeping plants stress-free close to harvest and during harvest, facilitated the production of sweeter fruit.

The maintenance of a TSS grade standard using either batch based (destructive) sampling or (non-invasive) grading of individual fruit is discussed. On-line grading of individual fruit is possible using near infrared spectroscopy (NIR), but the applicability of the technique to melons has received little published attention. Tissue sampling strategy was optimised, in relation to the optical geometry used (in commercial operation in Australia), both in terms of the diameter and depth of sampled tissue. NIR calibration model performance was superior when based on the TSS of outer, rather than inner mesocarp tissue. However the linear relationship between outer and middle tissue TSS was strong ($r^2 = 0.8$) in immature fruit, though less related in maturing fruit ($r^2 = 0.5$). The effect of fruit storage (maturation/senescence) on calibration model performance was assessed. There was a negligible effect of fruit cold storage on calibration performance.

Currently, the agronomist lacks a cost-effective tool to rapidly assess fruit TSS in the field. Design parameters for such a tool were established, and several optical front ends compared for rapid, though invasive, analysis. Further, for visualisation of the spatial distribution of tissue TSS within a melon fruit, a two-dimensional, or hyper-

spectral NIR imaging system based on a low cost 8-bit charge coupled device (CCD) camera and filter arrangement, was designed and characterised.

Table of contents

Abstract	ii
Acknowledgments	vii
Declaration	viii
Abbreviations	ix
Chapter 1. Melon sweetness – a thesis context	1
Chapter 2. <i>Cucumis melo</i> L. a review	7
Conclusion	27
Chapter 3. Source-sink manipulation to increase melon	
fruit biomass and soluble sugar content	29
Abstract	29
Introduction	30
Materials and methods	32
Results and discussion	39
Chapter 4. Water status	59
Abstract	59
Introduction	60
Materials and methods	62
Results and discussion	66
Chapter 5. Determination of melon sweetness	72
Abstract	72
Introduction	73
Materials and methods	77
Results and discussion	84
Conclusion	96
Chapter 6. Sugar imaging of fruit using a low cost CCD camera	97
Abstract	97
Introduction	98
Materials and methods	101
Results and discussion	107
Chapter 7. Rapid TSS assessment	121
Abstract	121
Introduction	122
Materials and methods	124
Results and discussion	129

Chapter 8. Summary	
Appendix 1: Source-sink manipulation to increase stonefruit	
biomass and soluble sugar content	140
Abstract	140
Introduction	141
Materials and methods	143
Results and discussion	146
Appendix 2: Defining assessable eating quality standards for fruit	153
Abstract	153
Introduction	154
Quality standards by commodity	163
Avocado	174
Banana	175
Citrus	177
Custard Apple	182
Grapes (table)	183
Kiwifruit	185
Lychee	187
Mango	188
Melon	190
Рарауа	192
Pineapple	193
Pome fruit	195
Stone fruit	200
Strawberry	203
Tomato	205
Conclusion	207

References

209

Acknowledgements

Much gratitude goes to my primary supervisor Associate Professor Kerry Walsh who was available at almost anytime to discuss the research. Thanks also to Professor David Midmore and Dr Gordon Rogers for their secondary supervisory roles.

The staff of CQU, especially Barry Hood, Robert Lowry, Colin Greensill, Mirta Golic, Christo Liebenburg, Ninghu Su, Aaron Slater, Jill Windle, Debbie Clarke, Donna Hobbs, and Stephen McKillup. Part time staff, students and volunteers for assistance in the laboratory and in the field, in particular John Guthrie, Nicole Bromell, Grant Zhu, Adam Lu, Zongjian Yang, Naveen Bhatia, Brendon Dodd, Darren Mann and Surya Bhattarai.

I also thank academic staff located elsewhere, including Professor Barry McGlasson (University of Western Sydney) for lending me his original 1962 thesis, Professor Gene Lester (USDA, Texas) for his help in carbohydrate biochemistry and Dr Junichi Sugiyama (NFRI, Japan) for his comments regarding NIR imaging.

I gratefully acknowledge One Harvest and Horticulture Australia Limited for financial support through the "Sweet Melon" project, and melon growers Bluey Stoldt, Peter and Lexie Dodson, and Phil Mansell for their patience with field experiments. Also thanks to Bob Shackles and the Department of Agriculture WA for supplying three months of five-star accommodation (for only a bottle of rum per week) on the mighty Ord River during my initial field research in Kununurra 2000.

Many thanks to The Council for Near Infrared Spectroscopy (USA) for facilitating travel to and my attendance at the 11th International Diffuse Reflectance Conference (Chambersburg), and to Professor Fred McClure and his wife Judy for their generous hospitality during my stay in North Carolina in 2002.

Sometimes research is a lonely and frustrating pursuit, and I thank all those who offered their friendship and who kept me company during my studies. Much love goes to my family for their continual support and encouragement during my candidature.

Declaration

I declare that this thesis is an original work and no part of this thesis has been previously submitted for the award of another degree.

I also declare that to the best of my knowledge any assistance I received in the experimentation presented in this thesis and all sources of information used in this thesis have been acknowledged.

Robert Long _

Robert Long

Abbreviations

ADC	ahaanhanaa
ABS	absorbance
ADC	analogue to digital conversion
AMA	Australian Melon Association
ANOVA	analysis of variance
cbar	centibars
CCD	charge coupled device
cf.	confer (compare)
cv.	cultivar variety
d	days
d ² ABS	second derivative absorbance
DAA	days after anthesis
DBH	days before harvest
DW	dry weight
e.g.	<i>exempli gratia</i> (for example)
Fig.	Figure
FW	fresh weight
HI	harvest index
i.e.	<i>id est</i> (that is)
LSD	
	least significant difference
LWR	leaf weight ratio
MLR	multiple linear regression
msec	milliseconds
n	number
NIR	near infrared
NSW	New South Wales
PAR	photosynthetic active radiation
PC	principle component
PDA	photodiode array
PLS	partial least squares
QDPI	Queensland Department of Primary Industries
QLD r ²	Queensland
	coefficient of determination
R^2	coefficient of determination (NIR calibrations only)
RCBD	randomised complete block design
RH	relative humidity
RMSECV	root mean standard error of cross validation
RMSEP	root mean standard error of prediction
s/n	signal to noise ratio
SD	standard deviation
SDR	standard deviation residual
SE	standard error
SW-NIR	short wave near infrared
TSS	total soluble solids
VS.	versus
vs. WA	Western Australia
vv A	w courii Ausualia