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5. INTEGRATED MAGNETICS 

 

Parts of this chapter have been published in IEEE Power Electronic Letters in 2005 

and in the Proceedings of AUPEC 2005. 

 

The two-inductor boost converter has been proven to be favourable in the 

applications where low-voltage high-current dc input needs to be transformed to 

high-voltage dc output.  The high dc voltage gain, the low switch voltage stress, the 

full utilisation of the transformer windings, the ease in the transformer volt-second 

balance and the relaxed diode reverse recovery requirement are several advantages 

of this boost-derived converter.  In the effort of reducing the converter size by 

increasing the switching frequency, the soft-switching technique is employed and 

the ZVS two-inductor boost converter results as shown in Chapter 4.  In both the 

hard-switched and the soft-switched forms, however, the two-inductor boost 

converter requires at least three separate magnetic components including two 

inductors and one transformer, which are accounted for the bulk, weight and cost 

[150].  This requirement also departs from the philosophy of “more silicon and less 

iron” in the design of the modern power electronic converters [91].  If three separate 

magnetic components can be merged into a single magnetic structure, not only can 

the size of the converter be greatly reduced, but also the converter will be more cost 

effective. 

 

The magnetic core integration theory was formally presented more than twenty years 
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ago as a way to assist in reducing the size of the switch mode power converters 

[151]-[153], while a simple showcase of the application can be traced back to early 

1930’s [154].  Recently, winding integration concept has been proposed as a new 

technique in reducing the winding cost and improving the efficiency [155].  Over the 

years, these integrated magnetic approaches have been widely applied to the current-

doubler rectifier circuit [138], [142], [143], [156]-[161]. 

 

This chapter provides a generic approach to the magnetic integration of the two 

inductors and the transformer in the two-inductor boost converter and presents a 

detailed analysis of the individual structures.  Four integrated magnetic structures  

will be discussed in detail which will be referred as Structures A, B, C and D. 

Structure A is a new structure and has been independently proposed by Gao and 

Ayyannar in [130] and by the author in [162].  This structure first appears in this 

thesis in Figure 5.5 on page 170.  Structure B is also a new structure and has been 

proposed by the author in [163].  This structure first appears in this thesis in Figure 

5.9 on page 189.  Structure C has been proposed by Gao and Ayyannar in [130] and 

by Yan and Lehman in [144] and [145].  This structure first appears in this thesis in 

Figure 5.11 on page 192.  Structure D has been independently proposed by Gao and 

Ayyannar in [130], by Yan and Lehman in [145] and by the author in [164] while a 

major contribution of this thesis is a comprehensive analysis of the structure.  This 

structure first appears in this thesis in Figure 5.13 on page 198. 

 

The equivalent input and magnetising inductance values of the two-inductor boost 

converter with integrated magnetics are established and the comparisons of the four 
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different magnetic structures are provided.  A soft-switched two-inductor boost 

converter with Structure B magnetic integration is also analysed in detail. 

 

5.1 State Analysis of the Hard-Switched Two-Inductor Boost Converter 

with Discrete Magnetics 

 

In order to analyse the two-inductor boost converter with the integrated magnetic 

structures, state analysis must be first conducted for the converter with discrete 

magnetic components.  Figure 5.1 shows the hard-switched two-inductor boost 

converter with a voltage-doubler rectifier.  In the analysis, all the components are 

considered to be ideal and the capacitors in the voltage-doubler rectifier are assumed 

to be large enough so that the output is a pure dc voltage. 
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Figure 5.1 Hard-Switched Two-Inductor Boost Converter 

 

Before Q1 turns off, both Q1 and Q2 are on.  At time 0=t , Q1 turns off and the 

converter will move through four states within a switching period as shown in 

Figure 5.2.  In order to be different from the state analysis in the ZVS two-inductor 
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boost converter, where States (a) to (d) are used for the individual resonant states 

over a half switching period, States (1) to (4) are used here for the individual 

switching states over one complete switching period. 
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Figure 5.2 Four States of the Hard-Switched Two-Inductor Boost Converter 

 

The duty ratio of the MOSFETs is Ds and it must be greater than 50% to prevent the 

open circuit of the currents in the two inductors from happening.  The switching 

period is Ts.  The input inductance is LLL == 21 .  The numbers of turns of the 

transformer T primary and secondary windings are respectively Np and Ns.  The 

voltages of the transformer T primary and secondary are respectively vp and vs.  The 

transformer magnetising inductance reflected to the secondary side is Lms.  In the 

analysis of each state, the derivatives of the instantaneous converter input current 

 and the instantaneous transformer secondary current i21 iiiIN += s are solved.  These 

equations will be used as the templates to obtain the equivalent circuits of the 
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converter with integrated magnetics later in the chapter. 

 

• State (1) ( ) ss TDt )1(0 −<<

 

In this state, Q1 is off and Q2 is on.  The circuit equations are: 

 

pvE
dt
diL −=1                                                  (5.1) 

E
dt
diL =2                                                     (5.2) 

s
s

p
p v

N
N

v =                                                    (5.3) 

 

Manipulations of Equations (5.1) to (5.3) yield: 
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The transformer model with the magnetising inductance reflected to the 

secondary side is used to derive 
dt
dis , as shown in Figure 5.3.  The currents in the 

ideal transformer primary and secondary windings are respectively ip and is1, and 

the transformer magnetising current reflected to the secondary side is is2. 
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Figure 5.3 Equivalent Transformer Model 

 

The following equations can be obtained from Figures 5.2 and 5.3: 
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Manipulations of Equations (5.1), (5.3), (5.5) and (5.6) yield: 
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The transformer model in Figure 5.3 also gives: 
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Manipulations of Equations (5.7) to (5.9) yield: 
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• State (2) (
2

)1( s
ss

T
tTD <<− ) 

 

In this state, Q1 and Q2 are both on.  Following the process in State (a), the 

derivative of the input current can be found as: 

 

E
Ldt

iid 21)( 21 =
+

                                             (5.11) 

 

According to Figure 5.2, the following equation can be obtained: 

 

0=sv                                                      (5.12) 

 

As the transformer secondary voltage is zero, both of the diodes D1 and D2 are 

reverse biased and the transformer secondary current is zero at all times within 

this state.  The derivative of the input current is: 

 

0=
dt
dis                                                     (5.13) 
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• State (3) ( ss
s TDt

T
)

2
3(

2
−<< ) 

 

In this state, Q1 is on and Q2 is off.  The derivatives of the input and the 

transformer secondary currents are respectively: 
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• State (4) ( sss TtTD <<− )
2
3( ) 

 

This state repeats State (2) and the derivatives of the input and the transformer 

secondary currents are respectively given in Equations (5.11) and (5.13). 

 

The current waveforms in the hard-switched two-inductor boost converter are shown 

in Figure 5.4. 

 

5.2 Integrated Magnetics with Magnetic Core Integration 

 

A fundamental magnetic integration solution for the two-inductor boost converter is 

to combine the three individual cores to a single core while still maintaining the four 
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individual windings including two for the inductors, one for the transformer primary 

and one for the transformer secondary.  This approach is named as Structure A as 

shown in Figure 5.5 and the analysis is given below. 
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Figure 5.4 Current Waveforms in the Hard-Switched Two-Inductor Boost Converter 

 

5.2.1 Two-Inductor Boost Converter with Structure A Magnetic Integration 

 

The two-inductor boost converter with Structure A magnetic integration is shown in 
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Figure 5.5. 
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Figure 5.5 Two-Inductor Boost Converter with Structure A Magnetic Integration 

 

The KVL requires that the voltages across the three windings on the converter 

primary side satisfy the following relationship: 

 

12 LLp vvv −=                                                 (5.16) 

 

Application of Faraday’s Law yields: 

 

dt
dN

dt
dN

dt
dN LL

c
p

12 φφφ
−=                                     (5.17) 

 

where NL is the number of turns of the two input inductors L1 and L2, and φ1, φ2, φc 
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are respectively the instantaneous fluxes in the two outer and the centre core legs 

and they obey the following equation: 

 

12 φφφ −=c                                                   (5.18) 

 

Manipulations of Equations (5.17) and (5.18) yield: 

 

Lp NN =                                                     (5.19) 

 

Equation (5.19) is the inherent constraint of Structure A magnetic integration.  If this 

constraint is not fulfilled, the magnetic integration becomes impossible as Equation 

(5.18) cannot be established in the magnetic core. 

 

5.2.2 Equivalent Input and Transformer Magnetising Inductances 

 

In order to obtain the equivalent input and transformer magnetising inductances of 

the two-inductor boost converter with Structure A magnetic integration, the 

converter must be analysed under three different operating conditions. 

 

• State (1) ( ) 0>sv

 

In this state, Q1 is off while Q2 is on and i1 flows in the transformer primary 

winding.  The magnetic circuit is drawn in Figure 5.6(a), where ℜo and ℜc are 

 
  



 172

respectively the reluctances of the outer and the centre core legs.  The fluxes in 

the two outer core legs are respectively: 
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According to Figure 5.5, Faraday’s Law gives: 
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Substitution of Equations (5.20) and (5.21) to (5.22) and (5.23) yields: 
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By defining La and Lb as: 
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Equations (5.24) and (5.25) can be simplified to: 
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• State (3) ( ) 0<sv

 

In this state, Q1 is on while Q2 is off and i2 flows in the transformer primary 

winding.  The magnetic circuit is drawn in Figure 5.6(b).  The fluxes in the two 

outer core legs are respectively: 
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According to Figure 5.5, Faraday’s Law gives: 
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Substitution of Equations (5.30) and (5.31) to (5.32) and (5.33) yields: 
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Equations (5.34) and (5.35) can be simplified by the definitions of La and Lb in 

Equations (5.26) and (5.27) to: 
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• States (2) and (4) ( 0=sv ) 

 

In these two states, Q1 and Q2 are both on and the transformer primary current is 
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zero.  The magnetic circuit is drawn in Figure 5.6(c).  The fluxes in the two outer 

core legs are respectively: 
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Figure 5.6 Structure A Magnetic Circuits 

(a) State (1) (b) State (3) (c) States (2) and (4) 

 

According to Figure 5.5, Faraday’s Law gives Equations (5.23), (5.32) and 

(5.40): 
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Substitution of Equations (5.38) and (5.39) to (5.23) and (5.32) yields: 
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Equation (5.41) can be simplified by the definition of La in Equation (5.26) to: 
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Manipulations of Equations (5.18), (5.23), (5.32) and (5.40) yield Equation 

(5.12).  Therefore, Equation (5.13) is still valid in this state. 

 

Comparisons of Equations (5.28), (5.29), (5.36), (5.37) and (5.42) respectively with 

their discrete magnetic counterparts, Equations (5.4), (5.10), (5.14), (5.15) and 

(5.11), yield: 
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Equations (5.43) and (5.44) imply that other than the number of turns, the input 

inductances are inversely proportional to the reluctance of the outer core leg and the 

magnetising inductance is inversely proportional to that of the centre core leg.  This 

normally requires that the outer core legs be gapped to store the energy in the input 
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inductors and prevent the core from saturation.  The gapping of the centre core leg is 

possible but not indispensable. 

5.2.3 DC Gain 

 

As the voltages across the two windings on the outer core legs are finite, the fluxes 

in the two outer core legs must be continuous.  This corresponds to the more familiar 

statement that the current in the inductor must be continuous in the circumstance 

with discrete magnetics. 

 

Consider the flux in one outer core leg φ1.  According to Figure 5.5, Faraday’s Law 

gives Equation (5.22) in State (1) when Q1 is off and Equation (5.32) in States (2) to 

(4) when Q1 is on.  In State (1), the transformer secondary voltage can be found as: 
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Therefore, Equation (5.22) can be rewritten as: 
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As the derivatives of the flux φ1 in Equations (5.32) and (5.46) are constants, the 

change of the flux when Q1 is off, (∆φ1)Q1,off, and that when Q1 is on, (∆φ1)Q1,on, are 

respectively: 
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Due to the continuity of the flux, the following equation can be obtained: 
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Substitution of Equations (5.47) and (5.48) to (5.49) and solving for VO yield: 
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Equation (5.50) validates that the two-inductor boost converter with Structure A 

magnetic integration has the same dc voltage gain as the converter with discrete 

magnetics. 

 

5.2.4 DC and AC Flux Densities 

 

In order to prevent the magnetic core from saturation, the peak flux density in each 

core leg must be established.  The ac fluxes must be also investigated in order for the 
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core loss analysis to be carried out.  The dc and ac fluxes in each core leg will be 

analysed separately. 

 

First, the dc fluxes in the individual core legs are discussed.  According to Figure 

5.6(a), the instantaneous fluxes in the three core legs in State (1) are restricted by 

Equations (5.18), (5.51) and (5.52): 
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Assuming that Φ1, Φ2, Φc, IIN and Is,1 are respectively the dc components of φ1, φ2, 

φc, iIN and is in State (1), Equations (5.18), (5.51) and (5.52) can be rewritten with 

the dc components of the variables as: 
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As the converter operation is half cycle symmetrical, the average powers at the 

transformer secondary and the output must be equal over a half switching period that 

includes States (1) and (2).  The equation of the power balance is: 
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Solving for Is,1 yields: 
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The power balance at the input and the output gives: 
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Manipulations of Equations (5.50), (5.57) and (5.58) yields: 
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Substitution of Equation (5.59) to (5.54) yields: 
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As Φ1, Φ2, Φc and IIN are also the dc components of φ1, φ2, φc and iIN over the entire 

switching period, Equations (5.53), (5.55) and (5.60) are valid over the entire 

switching period and the dc fluxes in the individual core legs can be solved as: 
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o
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=Φ=Φ
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0=Φ c                                                     (5.62) 

 

From Equations (5.23) and (5.32), the ac fluxes in the two outer core legs can be 

calculated as: 
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where ∆φ1 and ∆φ2 are respectively the total changes of the fluxes in the two outer 

core legs. 

 

If ∆φ1,1, ∆φ2,1 and ∆φc,1 are respectively defined as the changes of the fluxes in the 

individual core legs in State (1) and ∆φ1,2, ∆φ2,2 and ∆φc,2 are respectively defined as 

those in State (2), they can be calculated as: 
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As the flux in the centre core leg starts to decrease in State (3) and both the fluxes in 

the two outer core legs change monotonically in either States (1) or (2), the total 

change of the flux in the centre core leg is: 
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Therefore, the ac flux in the centre core leg is: 
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From Equations (5.61) to (5.63) and (5.70), the peak flux density in each core leg 

can be calculated as: 
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where Ac is the cross section area of the centre core leg.  The cross section area of 

the outer core leg is normally made to be half that of the centre core leg in ETD core 

types. 

 

The flux waveforms are shown in Figure 5.7.  It can be seen that the dc fluxes in the 

two outer core legs are cancelled while the ac fluxes are added together in the centre 

core leg. 
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Figure 5.7 Flux Waveforms in Structure A Core 
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5.2.5 Current Ripples 

 

The current ripples in the MOSFETs and the magnetic windings affect the 

conduction losses because under the same level of the dc component, the effective 

current increases if the ripple current is higher. 

 

If ∆iIN,1 and ∆is,1 are respectively defined as the changes of the input and the 

transformer secondary currents iIN and is in State (1), Equations (5.51) and (5.52) can 

be rewritten with the ac components of the variables in State (1) as: 
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s
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As the input current starts to decrease in State (2) and the transformer secondary 

current is zero in State (2), ∆iIN,1 and ∆is,1 are also ∆iIN and ∆is, the total changes of 

iIN and is.  Substitution of Equations (5.64), (5.65) and (5.66) to (5.73) and (5.74) 

yields: 
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If ∆i1,1, ∆ip,1, ∆is1,1 and ∆is2,1 are respectively defined as the changes of the currents 

i1, ip, is1 and is2 in State (1), Equations (5.5), (5.6), (5.8) and (5.9) can be rewritten 

with the ac variables in State (1) as: 
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Substitution of Equations (5.44), (5.45), (5.50) and (5.76) to (5.77), (5.78), (5.79) 

and (5.80) yields: 
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As the current i1 starts to increase in State (2) and the converter operation is half 

cycle symmetrical, ∆i1,1 is also ∆i1 or ∆i2, the total change of i1 or i2.  The current 

ripples of iIN, i1, i2 and is are respectively: 
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The current waveforms are the same as those in the converter with discrete 

magnetics shown in Figure 5.4. 

 

5.3 Integrated Magnetics with Winding Integration 

 

In order to further reduce the number of interconnections between the individual 

windings as well as the copper loss and the winding cost, winding integration is 

proposed as a better approach in magnetic integration [155].  This section studies 

three magnetic integration solutions with winding integration technique for the two-

inductor boost converter. 

 

5.3.1 Winding Integration Technique  

 

In the two-inductor boost converter, the transformer primary winding can be merged 

with the individual inductor windings and the two combined windings must be 

located on the two outer legs of a three-leg core to achieve the symmetrical 

operation.  Each combined winding functions as both the input inductor and the 

transformer primary windings in the converter with discrete magnetics.  

Topographically, there are four ways to wind the two combined windings onto the 
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two outer core legs and the directions of the induced fluxes φ1 and φ2 have four 

different combinations as shown in Figure 5.8. 
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Figure 5.8 Four Ways to Wind the Two Combined Windings 

 

According to the directions of the flux changes in the individual core legs, the 

number of the winding structures can be finally reduced to two, as shown in Figures 

5.8(a) and (b).  The winding structure in Figure 5.8(c) is equivalent to that in Figure 

5.8(b) while that in Figure 5.8(d) is equivalent to that in Figure 5.8(a).  In Figure 

5.8(a), the flux changes generated by the two individual windings are of the same 

direction in the two outer core legs and of different directions in the centre core leg.  

In Figure 5.8(b), the flux changes generated by the two individual windings are of 
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different directions in the two outer core legs and of the same direction in the centre 

core leg. 

 

As the flux in the transformer secondary winding must be alternating, the secondary 

winding must be placed on the centre core leg in Figure 5.8(a) and on the two outer 

core legs in Figure 5.8(b).  In these arrangements, the currents in the two windings 

on the outer core legs can be alternatively switched on so that an alternating flux can 

be generated in the transformer secondary winding. 

 

5.3.2 Structure B Magnetic Integration 

 

The approach which uses single secondary winding on the centre core leg is named 

as Structure B, as shown in Figure 5.9.  In Figure 5.9, the locations of the MOSFETs 

Q1 and Q2 are changed and Q1 is in series with the bottom combined winding while 

Q2 is in series with the top combined winding.  This arrangement maintains the 

relationship of the closings of the MOSFETs and the direction of the transformer 

secondary current.  In the two-inductor boost converter with discrete magnetics, the 

closing of Q2 results in a positive transformer secondary current as illustrated in 

Figure 5.1.  In the converter with integrated magnetics, the windings on the outer 

core legs integrate the functions of the input inductor and the transformer primary 

windings and the closing of Q2 also results in a positive transformer secondary 

current as illustrated in Figure 5.9.  The magnetic circuits of Structure B in different 

states are drawn in Figure 5.10. 
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Figure 5.9 Two-Inductor Boost Converter with Structure B Magnetic Integration 
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Figure 5.10 Structure B Magnetic Circuits 

(a) State (1) (b) State (3) (c) States (2) and (4) 

 

The converter is now analysed under three different operating conditions. 

 

• State (1) ( ) 0>sv

 

In this state, Q1 is off while Q2 is on and 02 =i .  The fluxes in one outer and the 
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centre core legs are respectively: 
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According to Figure 5.9, Faraday’s Law gives Equations (5.32) and (5.40).  

Substitution of Equations (5.85) and (5.86) to (5.32) and (5.40) yields Equations 

(5.28) and (5.29). 

 

• State (3) ( ) 0<sv

 

In this state, Q1 is on while Q2 is off and 01 =i .  The fluxes in one outer and the 

centre core legs are respectively: 
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According to Figure 5.9, Faraday’s Law gives Equations (5.23) and (5.40).  

Substitution of Equations (5.87) and (5.88) to (5.23) and (5.40) yields Equations 

(5.36) and (5.37). 
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• States (2) and (4) ( 0=sv ) 

 

In these two states, Q1 and Q2 are both on.  According to Figure 5.9, Faraday’s 

Law gives Equations (5.23), (5.32) and (5.40).  The fluxes in the individual core 

legs also obey the following equation: 

 

cφφφ += 21                                               (5.89) 

 

The fluxes in the two outer core legs are respectively given in Equations (5.38) 

and (5.39) and substitution of Equations (5.38) and (5.39) to (5.23) and (5.32) 

yields Equation (5.41).  Manipulations of Equations (5.23), (5.32), (5.40) and 

(5.89) yield Equation (5.12).  Therefore, Equation (5.13) is still valid in this 

state. 

 

As the derivatives of the input and the transformer secondary currents in the 

individual operating conditions in Structure B are the same as those in Structure A, 

the equivalent input inductances and magnetising inductance are the same as those 

given in Equations (5.43) and (5.44).  Therefore, this magnetic structure also 

requires that the outer core legs be gapped to store the energy in the input inductors.  

Like the gapping arrangement of the centre core leg in Structure A, the gapping of 

the centre core leg is possible but not indispensable in Structure B. 
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5.3.3 Structures C and D Magnetic Integration 

 

The approach which uses two secondary windings on the two outer core legs is 

named as Structure C, as shown in Figure 5.11 [130], [144], [145].  In Figure 5.11, 

the MOSFETs Q1 and Q2 have the same locations as those in Figure 5.9.  The 

magnetic circuits of Structure C in different states are drawn in Figure 5.12. 
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Figure 5.11 Two-Inductor Boost Converter with Structure C Magnetic Integration 
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Figure 5.12 Structure C Magnetic Circuits 

(a) State (1) (b) State (3) (c) States (2) and (4) 
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The converter is now analysed under three different operating conditions. 

 

• State (1) ( ) 0>sv

 

In this state, Q1 is off while Q2 is on and 02 =i .  The fluxes in the two outer core 

legs are respectively: 
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According to Figure 5.11, Faraday’s Law gives Equations (5.32) and (5.92): 
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Substitution of Equations (5.90) and (5.91) to (5.32) and (5.92) yields: 
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By defining Lc and Ld as: 
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Equations (5.93) and (5.94) can be simplified to: 
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• State (3) ( ) 0<sv

 

In this state, Q1 is on while Q2 is off and 01 =i .  The fluxes in the two outer core 

legs are respectively: 
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According to Figure 5.11, Faraday’s Law gives Equations (5.23) and (5.92).  

Substitution of Equations (5.99) and (5.100) to (5.23) and (5.92) yields: 
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Equations (5.101) and (5.102) can be simplified by the definitions of Lc and Ld 

in Equations (5.95) and (5.96) to: 
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• States (2) and (4) ( 0=sv ) 

 

In these two states, Q1 and Q2 are both on.  The fluxes in the two outer core legs 

are respectively: 
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According to Figure 5.11, Faraday’s Law gives Equations (5.23), (5.32) and 

(5.92).  The fluxes in the individual core legs also obey the following equation: 

 

21 φφφ +=c                                                 (5.107) 

 

Substitution of Equations (5.105) and (5.106) to (5.23) and (5.32) yields: 
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Equation (5.108) can be simplified by the definition of Lc in Equation (5.95) to: 
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Manipulations of Equations (5.23), (5.32), (5.92) and (5.107) yield Equation 

(5.12).  Therefore, Equation (5.13) is still valid in this state. 

 

Comparisons of Equations (5.97), (5.98), (5.103), (5.104) and (5.109) respectively 

with their discrete magnetic counterparts, Equations (5.4), (5.10), (5.14), (5.15) and 

(5.11), yield: 
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Equations (5.110) and (5.111) imply that other than the number of turns, the input 

inductances are related to the reluctances of both the outer and the centre core legs 

and the magnetising inductance is inversely proportional to that of the centre core 

leg only.  In this magnetic structure, the centre core leg can be gapped to store the 

energy in the input inductors.  The gapping of the outer core legs is possible but not 

indispensable.  If the centre core leg is the only gapped leg, the input inductances 

can be estimated to be inversely proportional to the reluctance of the centre core leg 

as  in this case. oc ℜ>>ℜ

 

According to the flux directions specified in Structure C in Figure 5.11, the increase 

or the decrease of the flux in the centre core leg results in the increase or the 

decrease of both the fluxes in the two outer core legs.  Therefore, a variation of this 

magnetic structure can be developed by placing another winding in the centre core 

leg in series with one of the two combined windings in the converter primary side 

when only one MOSFET is on.  This approach is named as Structure D.  Figure 5.13 

shows the circuit diagram of the two-inductor boost converter with Structure D 

magnetic integration.  The magnetic circuits of Structure D in different states are 

drawn in Figure 5.14. 
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Figure 5.13 Two-Inductor Boost Converter with Structure D Magnetic Integration 
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Figure 5.14 Structure D Magnetic Circuits 

(a) State (1) (b) State (3) (c) States (2) and (4) 

 

The converter is now analysed under three different operating conditions. 

 

• State (1) ( ) 0>sv

 

In this state, Q1 is off while Q2 is on and 02 =i .  If Nc is the number of the turns 

of the centre core leg winding, the fluxes in the three core legs are respectively: 
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According to Figure 5.13, Faraday’s Law gives Equations (5.92) and (5.115): 
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Substitution of Equations (5.112), (5.113) and (5.114) to (5.92) and (5.115) 

yields: 
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With the definition of Ld in Equation (5.96) and by defining Le as: 
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Equations (5.116) and (5.117) can be simplified to: 
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• State (3) ( ) 0<sv

 

In this state, Q1 is on while Q2 is off and 01 =i .  The fluxes in the three core legs 

are respectively: 
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According to Figure 5.13, Faraday’s Law gives Equations (5.92) and (5.124): 
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Substitution of Equations (5.121), (5.122) and (5.123) to (5.92) and (5.124) 

yields: 
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Equations (5.125) and (5.126) can be simplified with the definitions of Ld and Le 

in Equations (5.96) and (5.118) to: 
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• States (2) and (4) ( 0=sv ) 

 

In these two states, Q1 and Q2 are both on.  The fluxes in the three core legs are 

respectively: 
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According to Figure 5.13, Equations (5.92), (5.107), (5.115) and (5.124) can be 

established.  Substitution of Equations (5.129), (5.130) and (5.131) to (5.115) 

and (5.124) yields: 
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Equation (5.132) can be simplified by the definition of Le in Equation (5.118) as: 
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Manipulations of Equations (5.92), (5.107), (5.115) and (5.124) yield Equation 

(5.12).  Therefore, Equation (5.13) is still valid in this state. 

 

Comparisons of Equations (5.119), (5.120), (5.127), (5.128) and (5.133) respectively 

with their discrete magnetic counterparts, Equations (5.4), (5.10), (5.14), (5.15) and 

(5.11), yield: 
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Equations (5.134) and (5.135) imply that other than the number of turns, the input 

and the magnetising inductances are related to the reluctances of both the outer and 

the centre core legs.  In this magnetic structure, the gapping arrangement is the same 

as that in Structure C and the input inductances can be estimated to be inversely 

proportional to the reluctance of the centre core leg if only the centre core leg is 

gapped.  The extra winding on the centre core leg in this magnetic integration 

structure provides additional input filtering inductance to the input current and one 

winding turn on the centre core leg is effective as two winding turns on the outer 

core leg in the contribution to the input inductances according to Equation (5.134). 

 

5.4 Comparisons of the Four Magnetic Integration Structures 

 

In this section, a set of parameters including the dc gain, the dc and ac flux densities 

in the three core legs and the current ripples in the individual windings will be 

established and comparisons will be made for the four magnetic structures. 
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5.4.1 Structure A Magnetic Integration 

 

The individual parameters have been established in Section 5.2 and will not be 

repeated here.  The parameters of the remaining three magnetic structures will be 

derived with the same approaches. 

 

5.4.2 Structure B Magnetic Integration 

 

According to Figure 5.9, Faraday’s Law gives Equations (5.23) and (5.40) in State 

(3) when Q2 is off and Equation (5.32) in States (1), (2) and (4) when Q2 is on.  

Manipulations of Equations (5.23), (5.40) and (5.89) yield: 
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In State (3), the transformer secondary voltage can be found as: 
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Therefore, Equation (5.136) can be rewritten as Equation (5.46).  The change of the 

flux when Q2 is off, (∆φ1)Q2,off and that when Q2 is on, (∆φ1)Q2,on, are respectively: 
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Due to the continuity of the flux, the following equation can be obtained: 

 

0)()( ,21,21 =∆+∆ onQoffQ φφ                                     (5.140) 

 

Substitution of Equations (5.138) and (5.139) to (5.140) and solving for VO yield 

Equation (5.50). 

 

According to Figure 5.10(a), the instantaneous fluxes in the three core legs in State 

(1) are restricted by Equations (5.89), (5.141) and (5.142): 

 

INppoo iNiN ==ℜ+ℜ 121 φφ                                  (5.141) 

sscco iN=ℜ−ℜ φφ2                                         (5.142) 

 

Equations (5.141), (5.142) and (5.89) can be respectively rewritten with the dc 

components of the variables as Equations (5.53), (5.143) and (5.144), which are 

valid over the entire switching period: 
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The dc fluxes in the individual core legs can be calculated from Equations (5.53), 

(5.143) and (5.144) and they are the same as those in Structure A, which are given in 

Equations (5.61) and (5.62). 

 

The ac fluxes in the two outer core legs are the same as those in Structure A, which 

are given in (5.63).  The changes of the fluxes in the individual core legs in State (1) 

∆φ1,1, ∆φ2,1 and ∆φc,1 are respectively: 
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The changes of the fluxes in the two outer core legs in State (2) ∆φ1,2 and ∆φ2,2 are 

the same as those in Structure A, which are given in Equation (5.67).  The change of 

the flux in the centre core legs in State (2) ∆φc,2 can then be calculated as: 
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As the flux in the centre core leg starts to decrease in State (3), the ac flux can be 

calculated from Equations (5.147) and (5.148).  It can be calculated that the ac flux 

in the centre core leg is the same as that in Structure A, which is given in Equation 

(5.70).  As both the dc and ac fluxes are the same as those in Structure A, the peak 

flux densities in the individual core legs are the same as those in Structure A, which 

are given in Equations (5.71) and (5.72). 

 

In order to find the input and the transformer secondary current ripples, Equations 

(5.141) and (5.142) must be rewritten with the ac components of the variables in 

State (1) to Equations (5.73) and (5.149): 
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After substitution of Equations (5.145), (5.146) and (5.147) to (5.73) and (5.149), 

the current ripples can be found to be the same as those in Structure A, which are 

given in Equations (5.82) and (5.84). 

 

The flux and the current waveforms are shown in Figure 5.15.  It can be seen that in 

Structure B, the dc fluxes in the two outer core legs are cancelled and the ac fluxes 

are added together in the centre core leg. 
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Figure 5.15 Flux and the Current Waveforms in Structure B 
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5.4.3 Structure C Magnetic Integration 

 

According to Figure 5.11, Faraday’s Law gives Equations (5.23) and (5.92) in State 

(3) when Q2 is off and Equation (5.32) in States (1), (2) and (4) when Q2 is on.  

Manipulations of Equations (5.23) and (5.92) yield Equation (5.136).  The change of 

the flux when Q2 is off, (∆φ1)Q2,off and that when Q2 is on, (∆φ1)Q2,on, are respectively 

given in Equations (5.138) and (5.139) and the output voltage VO can be calculated 

as given in Equation (5.50). 

 

According to Figure 5.12(a), the instantaneous fluxes in the three core legs in State 

(a) are restricted by Equations (5.107), (5.150) and (5.151): 
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sscco iN=ℜ+ℜ φφ2                                          (5.151) 

 

Equations (5.107), (5.150) and (5.151) can be respectively rewritten with the dc 

components of the variables as Equations (5.152) to (5.154), which are valid over 

the entire switching period: 
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The dc fluxes in the individual core legs can be solved as: 
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The ac fluxes in the two outer core legs are the same as those in Structure A, which 

are given in (5.63).  The changes of the fluxes in the individual core legs in State (1) 

∆φ1,1, ∆φ2,1 are the same as those in Structure B, which are given in Equations 

(5.145) and (5.146).  The change of the flux in the centre core leg in State (1) ∆φc,1 

can then be calculated as: 

 

p

ss
c N

TDE )21(
1,21,11,

−
=∆+∆=∆ φφφ                           (5.157) 

 

As the flux in the centre core leg starts to increase in State (2), the total change of 

the flux in the centre core leg is: 
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The peak flux densities in the individual core legs can be calculated as: 
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In order to find the input and the transformer secondary current ripples, Equations 

(5.150) and (5.151) are manipulated and rewritten with the ac components of the 

variables in State (1) as: 
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As ∆iIN,1 and ∆is,1 are also the total change of the currents iIN and is over the entire 

switching period, substitution of Equations (5.145), (5.146) and (5.157) to (5.161) 

and (5.162) yields: 
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The input and transformer secondary current ripples are respectively: 
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The flux and the current waveforms are shown in Figure 5.16.  It can be seen that in 

Structure C, the dc fluxes in the two outer core legs are added together and the ac 

fluxes are partially cancelled in the centre core leg.  This leads to a much lower core 

loss in the centre core leg as the core loss increases at a rate much faster than the 

linear relationship of the ac flux density [165].  Structure C therefore becomes a 

more attractive design than Structures A and B in terms of the core loss.  The core 

saturation will not be an issue since the cross section area of the centre core leg is 

twice that of the outer core leg.  Under the symmetrical operation, the dc flux 

density in the centre core leg equals to those in the two outer core legs. 

 

5.4.4 Structure D Magnetic Integration 

 

According to Figure 5.13, Equations (5.92), (5.107) and (5.115) are valid in State (1) 

when Q2 is on and Q1 is off.  Manipulations of Equations (5.92), (5.107) and (5.115) 

yield: 
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Figure 5.16 Flux and the Current Waveforms in Structure C 
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Equations (5.107), (5.115) and (5.124) are valid in States (2) and (4) when both Q1 

and Q2 are on.  Manipulations of Equations (5.107), (5.115) and (5.124) yield: 
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Equations (5.92), (5.107) and (5.124) are valid in State (3) when Q2 is off and Q1 is 

on.  Manipulations of Equations (5.92), (5.107) and (5.124) yield: 
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As Equations (5.45) and (5.138) are respectively valid in States (1) and (3), the 

derivatives of the fluxes in Equations (5.167) to (5.169) are constants.  If ∆φ1,j is 

defined as the change of the flux in one outer core leg in State (j), where 

, it can be calculated that: 4,3,2,1=j
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Due to the continuity of the flux, the following equation can be obtained: 
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Substitution of Equations (5.170), (5.171) and (5.172) to (5.173) and solving for VO 

yield Equation (5.50).  The number of turns of the extra winding in the centre core 

leg Nc does not appear in the output voltage equation.  This implies that while the 

winding in the centre core leg in Structure D provides additional input inductance, it 

does not affect the dc gain of the converter.  Therefore, this magnetic integration 

structure offers another degree of freedom in controlling the input current ripples. 

 

According to Figure 5.14(a), the instantaneous fluxes in the three core legs in State 

(1) are restricted by Equations (5.107), (5.174) and (5.175): 
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Equations (5.107), (5.174) and (5.175) can be respectively rewritten with the dc 

components of the variables as Equations (5.154), (5.176) and (5.177), which are 

valid over the entire switching period: 
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From Equations (5.154), (5.176) and (5.177), the dc fluxes in the individual core 

legs can be solved as: 
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As φ1 increases in States (1), (2) and (4) and decreases in State (3), ∆φ1,3 is also the 

total change of the flux in each of the two outer core legs.  Substitution of Equation 

(5.50) to (5.172) yields: 
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The change of the flux in State (1) ∆φ2,1 is: 
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After substitution of Equation (5.50) to (5.170) and (5.181), the change of the flux in 

the centre core leg in State (1) ∆φc,1 can be calculated as: 
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As the flux in the centre core leg starts to increase in State (2), the total change of 

the flux in the centre core leg is: 
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The peak flux densities in the individual core legs can be calculated as: 
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In order to find the input and the transformer secondary current ripples, Equations 

(5.174) and (5.175) are rewritten with the ac components of the variables in State (1) 

as: 
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1,1,1,1,1 )( ssINcpcco iNiNN ∆−∆+=∆ℜ+∆ℜ φφ                   (5.186) 

1,1,1,1,2 ssINcco iNiN ∆+∆=∆ℜ+∆ℜ φφ                         (5.187) 

 

As ∆iIN,1 and ∆is,1 are also the total changes of the currents iIN and is over the entire 

switching period, manipulations of Equations (5.170), (5.181), (5.182), (5.186) and 

(5.187) yield: 
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The input and transformer secondary current ripples are respectively: 
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The flux and the current waveforms are the same as shown in Figure 5.16. 
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5.4.5 Comparisons 

 

Some important parameters of the four integrated magnetic structures are compared 

in Table 5.1, where fs, NI, NII, NIII, ℜI, ℜII, ℜIII, DI, DII, DIII, DIV and DV are 

respectively defined as: 
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pI NN =                                                  (5.193) 

sII NN =                                                  (5.194) 

cpIII NNN 2+=                                            (5.195) 

oI ℜ=ℜ                                                  (5.196) 

cII ℜ=ℜ                                                  (5.197) 

coIII ℜ+ℜ=ℜ 2                                            (5.198) 

sI DD =                                                   (5.199) 

sII DD −=1                                                (5.200) 

12 −= sIII DD                                              (5.201) 
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Item Structure A Structure B Structure C Structure D 

Number of 
Windings 4 3 4 5 

Input 
Inductance 

L I

IN
ℜ

2

 
I

IN
ℜ

2

 
III

IN
ℜ

2

 
III

IIIN
ℜ

2

 

Magnet-
ising 

Inductance 
Lms

II

IIN
ℜ

2

 
II

IIN
ℜ

2

 
II

IIN
ℜ

−
2

 
III

III

I
I

II

N
N
N

ℜ−ℜ 2

2

22  

DC Gain 
EVO  

III

II

DN
N 2

⋅  
III

II

DN
N 2

⋅  
III

II

DN
N 2

⋅  
III

II

DN
N 2

⋅  

Peak Flux 
Density 
B1,max, 
B2,max

scI

I

cI

INI

fAN
ED

A
IN

+
ℜ

 
scI

I

cI

INI

fAN
ED

A
IN

+
ℜ scI

I

cIII

INI

fAN
ED

A
IN

+
ℜ

 
scIII

IV

cIII

INIII

fAN
ED

A
IN

+
ℜ

 

Peak Flux 
Density 
Bc,max scI fAN

E
2

 
scI fAN

E
2

 
scI

III

cIII

INI

fAN
ED

A
IN

2
+

ℜ
 

scIII

III

cIII

INIII

fAN
ED

A
IN

2
+

ℜ
 

Current 
Ripple 
∆iIN sI

IIII

fN
ED

2

ℜ
 

sI

IIII

fN
ED

2

ℜ
 

sI

IIIIII

fN
ED

2

ℜ
 

sIII

IIIIII

fN
ED

2

ℜ
 

Current 
Ripple   
∆is

E
fN

D
N
N

sI

IIII

II

I
2

ℜ+ℜ

 

E
fN

D
N
N

sI

IIII

II

I
2

ℜ+ℜ

 

E
fN
DD

N
N

sI

IIIIIII

II

I
2

ℜ+ℜ  E
fN
DD

N
N

sIII

IIIIIIV

II

I
2

ℜ+ℜ

 

Leakage 
Inductance Low High Medium Medium 

Core Loss High High Low Low 

Minimum 
Gapped 

Legs 

Two outer core 
legs 

Two outer core 
legs Centre core leg Centre core leg 

Table 5.1 Comparisons of the Four Integrated Magnetic Structures 
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5.5 Experimental Waveforms of the Hard-Switched Two-Converter Boost 

Converter with Structures A and C Magnetic Integration 

 

In order to validate the theoretical analysis, the hard-switched two-inductor boost 

converter with Structures A and C magnetic integration have been constructed.  

Structure A is implemented using an ETD39 core with a 0.5-mm air gap in each of 

the two outer core legs and Structure C is implemented using an ETD39 core with a 

0.5-mm air gap in the centre core leg only.  The ETD39 core has a minimum centre 

core leg cross section area of 123 mm2 [166].  Other main components used in the 

converter shown in Figures 5.5 and 5.11 are listed below: 

 

• MOSFETs Q1 and Q2 – ST STB50NE10, VVDS 100= , , 

. 

AI D 50=

Ω= 027.0)(onDSR

• Diodes D1 and D2 – Microsemi UPSC600, AI F 0.1= , , 

. 

VVRRM 600=

VVF 6.1=

• Capacitors CO1 and CO2 – Vishay class X7R multilayer ceramic surface 

mount capacitor VJ1210Y104KXCAT, FC µ1.0= , . VVdc 200=

 

The ac flux and the current waveforms are respectively shown in Figures 5.17 and 

5.18.  The top two waveforms are the ac components of the fluxes φ1 and φc as 

recovered by integrating the voltage of a single search turn wound on the 

transformer core leg.  The bottom two waveforms are the currents i1 and iIN. 
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The experimental waveforms shown in Figure 5.17 agree well with the theoretical 

waveforms in Figures 5.4 and 5.7 and those shown in Figure 5.18 agree well with 

the theoretical waveforms in Figure 5.16.  It can be clearly seen that for the same 

amount of flux ripple in the outer core leg, the flux ripple in the centre core leg in 

Structure C is much smaller than that in Structure A. 

 

Math1 5.0µVs 4.0µs  

 Figure 5.17 AC Flux and Current Waveforms in the Hard-Switched Two-Inductor 

Boost Converter with Structure A Magnetic Integration 

Channel M1: AC Component of Flux φ1 (5 µWb/div),  

Channel M2: AC Component of Flux φc (5 µWb/div),  

Channel 3: Current i1 (2 A/div), Channel 4: Current iIN (2 A/div) 
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Math1 5.0µVs 4.0µs  

Figure 5.18 AC Flux and Current Waveforms in the Hard-Switched Two-Inductor 

Boost Converter with Structure C Magnetic Integration 

Channel M1: AC Component of Flux φ1 (5 µWb/div), 

Channel M2: AC Component of Flux φc (5 µWb/div), 

Channel 3: Current i1 (2 A/div), Channel 4: Current iIN (2 A/div) 

 

As Structure B has high transformer leakage inductance, it is not suited to the hard-

switched converter operation.  A soft-switched two-inductor boost converter with 

Structure B magnetic integration will be introduced in the next section. 
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5.6 Soft-Switched Two-Inductor Boost Converter with Structure B 

Magnetic Integration 

 

Amongst the four integrated magnetic structures, Structure B presents the highest 

transformer leakage inductance as the primary and the secondary windings are 

located on different core legs.   In the operation of the hard-switched two-inductor 

boost converter, the transformer leakage inductance resonates with the MOSFET 

output capacitance when the MOSFET turns off and this causes over voltage across 

the MOSFETs.  This adverse effect prohibits the application of Structure B magnetic 

integration in the hard-switched two-inductor boost converter. 

 

In the ZVS two-inductor boost converter, however, the transformer leakage 

inductance is actively utilised as part of the resonant inductance and this enables the 

employment of Structure B magnetic integration in the converter.  This section 

provides a detailed analysis of the application of Structure B magnetic integration in 

the ZVS two-inductor boost converter with a voltage-doubler rectifier, as shown in 

Figure 5.19. 

 

5.6.1 ZVS Two-Inductor Boost Converter with Structure B Magnetic 

Integration 

 

Figure 5.20 shows the proposed ZVS two-inductor boost converter with Structure B 

magnetic integration. 
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Figure 5.19 ZVS Two-Inductor Boost Converter with a Voltage-Doubler Rectifier 
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Figure 5.20 ZVS Two-Inductor Boost Converter with Structure B Magnetic 

Integration 

 

In Figure 5.20, the resonant inductance is placed in series with the transformer 

secondary winding for the simplicity of the circuit diagram as the transformer 

primary winding is performed by the two separate windings on the two outer core 

legs.  The resonant inductance in Figure 5.20 can be related to that in Figure 5.19 as: 

 

r
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s
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N
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L 2
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=                                               (5.204) 
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The implementation of the resonant inductance normally requires additional high-

quality-factor inductors in series with the existing transformer leakage inductance so 

that the characteristic frequency of the resonant tank is comparable to the converter 

switching frequency.  In Structure B magnetic integration, however, the transformer 

leakage inductance is much larger than that of the transformer with tight couplings 

between the primary and the secondary windings and is normally large enough to 

form the resonant inductance by itself.  In this case, the number of magnetic core 

and copper winding components can be significantly reduced.  The four cores and 

five windings required by the two input inductors, the resonant inductor and the 

transformer in the ZVS two-inductor boost converter with discrete magnetics are 

reduced to a single core with three windings.  This results in a more compact design 

with a potentially higher power density. 

 

The resonant capacitances are implemented by the MOSFET output capacitances in 

parallel with the additional low-dissipation-factor capacitors. 

 

5.6.2 Equivalent Input and Transformer Magnetising Inductances 

 

The equivalent input and magnetising inductances need to be analysed against the 

soft-switched two-inductor boost converter.  The derivatives of the converter 

instantaneous input and transformer secondary currents in the soft-switched 

converter with discrete magnetics will be solved first and these will be used as the 

templates to obtain the equivalent circuit of the soft-switched converter with 

Structure B magnetic integration.  In order to be consistent with the converter 
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topology in Figure 5.20, the resonant inductor in Figure 5.19 is moved to the 

transformer secondary side and the converter is redrawn in Figure 5.21. 
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Figure 5.21 ZVS Two-Inductor Boost Converter with the Resonant Inductance in the 

Transformer Secondary Side 

 

The converter is now analysed under three different operating conditions. 

 

• State (1) ( ) ss TDt )1(0 −<<

 

In this state, Q1 is off while Q2 is on and 01 =Qi .  The circuit equations are the 

same as Equations (5.1) to (5.3) and the derivative of the input current can be 

obtained as Equation (5.4).  The equivalent transformer model in Figure 5.3 can 

still be used as the transformer leakage inductance is classified as part of the 

resonant inductance.  According to Figure 5.21, the following equations can be 

obtained: 

 

11 Cp iii −=                                                (5.205) 
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dt
dv

Ci C
rC

1
1 =                                              (5.206) 

pC vv =1                                                   (5.207) 

 

Manipulations of Equations (5.1), (5.3), (5.5), (5.8), (5.9), (5.205), (5.206) and 

(5.207) yield: 
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• State (3) ( ss
s TDt

T
)

2
3(

2
−<< ) 

 

In this state, Q1 is on while Q2 is off and 02 =Qi .  The derivative of the input 

current can be obtained as Equation (5.14).  According to Figure 5.21, the 

following equations can be obtained: 

 

22 Cp iii +−=                                              (5.209) 

dt
dv

Ci C
rC

2
2 =                                             (5.210) 

pC vv −=2                                                 (5.211) 

 

The derivative of the transformer secondary current can then be obtained as: 
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• States (2) and (4) (
2

)1( s
ss

T
tTD <<−  and sss TtTD <<− )

2
3( ) 

 

In these two states, Q1 and Q2 are both on.  The derivative of the input current 

can be obtained as Equation (5.11).   As the transformer secondary voltage is 

zero, the derivative of and the transformer secondary current is only determined 

by the converter output voltage and the resonant inductance and no longer 

related to the transformer magnetising inductance. 

 

In the hard-switched two-inductor boost converter in Figure 5.9,  in State (1) 

when Q

02 =i

1 is off,  in State (3) when Q01 =i 2 is off and 0=si  in States (2) and (4) 

when Q1 and Q2 are both on.  Due to the introduction of the resonant capacitors in 

the soft-switched converter, however, the current in the combined winding is no 

longer zero when the corresponding MOSFET is off and the current in the 

transformer secondary winding is no longer a constant zero when both the 

MOSFETs are on.  The magnetic circuit of Structure B is redrawn in Figure 5.22 and 

this is valid at all times in States (1) to (4). 

 

According to Figure 5.22, the fluxes in the three core legs are respectively: 
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Figure 5.22 Magnetic Circuit of Structure B in the ZVS Two-Inductor Boost 

Converter 

 

According to Figure 5.20, Equations (5.40) and (5.216) to (5.219) can be obtained. 
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221 CQ iii +=                                                          (5.218) 

112 CQ iii +=                                                          (5.219) 
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The converter in Figure 5.20 is now analysed under three different operating 

conditions. 

 

• State (1) ( ) ss TDt )1(0 −<<

 

In this state,  as Q01 >Cv 1 is off and 02 =Cv  as Q2 is on.  Equation (5.216) can 

be rewritten to Equation (5.32).  Manipulations of Equations (5.32), (5.40), 

(5.89) and (5.217) yield: 
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Substitution of Equation (5.220) to (5.217) yields: 

 

s
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p
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As , Equation (5.219) can be rewritten as: 01 =Qi

 

12 Cii =                                                            (5.222) 

 

Manipulations of Equations (5.206), (5.220) and (5.222) yield: 
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Substitution of Equations (5.213), (5.214) and (5.215) to (5.32), (5.40) and 

(5.221) and manipulations the results with Equation (5.223) yield Equations 

(5.28) and (5.224): 

 

2

222

2
11

dt
vd

C
N
N

v
LN

N
LL

E
N
N

dt
di s

r
s

p
s

as

p

bas

ps
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⋅=            (5.224) 

 

• State (3) ( ss
s TDt

T
)

2
3(

2
−<< ) 

 

In this state,  as Q01 =Cv 1 is on and  as Q02 >Cv 2 is off.  Equation (5.217) can 

be rewritten to Equation (5.23).  Manipulations of Equations (5.23), (5.40), 

(5.89) and (5.216) yield: 
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Substitution of Equation (5.225) to (5.216) yields: 
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As , Equation (5.218) can be rewritten as: 02 =Qi

 

21 Cii =                                                            (5.227) 

 

Manipulations of Equations (5.210), (5.225) and (5.227) yield: 
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Substitution of Equations (5.213), (5.214) and (5.215) to (5.23), (5.40) and 

(5.226) and manipulations the results with Equation (5.228) yield Equations 

(5.36) and (5.229): 
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• States (2) and (4) (
2

)1( s
ss

T
tTD <<−  and sss TtTD <<− )

2
3( ) 

 

In these two states, Q1 and Q2 are both on.  According to Figure 5.20, Faraday’s 

Law gives Equations (5.23) and (5.32) and Equation (5.41) can be obtained.  

Manipulations of Equations (5.23), (5.32), (5.40) and (5.89) yield Equation 

(5.12).  Therefore the transformer secondary current is no longer determined by 

the transformer magnetising inductance. 
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Comparisons of Equations (5.28), (5.224), (5.36), (5.229) and (5.41) respectively 

with their discrete magnetic counterparts, Equations (5.4), (5.208), (5.14), (5.212) 

and (5.11), yield Equations (5.43) and (5.44).  Equations (5.43) and (5.44) confirm 

that the equivalent input and transformer magnetising inductances of Structure B 

magnetic integration are the inherent characteristics of the magnetic structure and do 

not change with the hard-switched or the soft-switched two-inductor boost converter 

topologies. 

 

5.6.3 DC Fluxes 

 

The dc fluxes in Structure B in the ZVS two-inductor boost converter can be 

analysed in the same process as in the integrated magnetic structures in the hard-

switched converter.  However, the ac fluxes in the ZVS converter must be 

established through the state analysis, which will be introduced in the next section. 

 

Assuming that I1, I2, IS are respectively the dc components of i1, i2 and is over the 

entire switching period, the following equations can be established as the operation 

of the ZVS two-inductor boost converter is half cycle symmetrical: 

 

221
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II ==                                              (5.230) 

0=SI                                                    (5.231) 

 

Assuming that I1,j, I2,j and Is,j are respectively the dc components of i1, i2 and is in 
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State (j), where , the following equation can be established: 4,3,2,1=j

 

∑
=

=
4

1
,

j
jwjw IDI , sw ,2,1= , 4,3,2,1=j , 

⎪⎩

⎪
⎨
⎧

=−

=−
=

4,2,
2
1

3,1,1

jD

jD
D

s

s

j      (5.232) 

 

According to Figure 5.22, the instantaneous fluxes in the three core legs are 

restricted by Equations (5.51) and (5.233): 

 

sspcco iNiN −=ℜ+ℜ 11 φφ                                   (5.233) 

 

Equations (5.51) and (5.233) can be respectively rewritten to Equations (5.53) and 

(5.234) with the dc components of the variables in each state, where Φ1, Φ2, Φc and 

IIN are the dc components of φ1, φ2, φc, iIN in each state and as well over the entire 

switching period: 

 

jssjpcco ININ ,,11 −=Φℜ+Φℜ , 4,3,2,1=j                     (5.234) 

 

 Manipulations of Equations (5.232) and (5.234) yield: 

 

Sspcco ININ −=Φℜ+Φℜ 11                                 (5.235) 

 

Substitution of Equations (5.230) and (5.231) to (5.235) yields: 
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21
INp

cco

IN
=Φℜ+Φℜ                                      (5.236) 

 

Equations (5.53) and (5.236) are valid over the entire switching period and the dc 

fluxes in the individual core legs are the same as those in Structure B in the hard-

switched two-inductor boost converter, which are given in Equations (5.61) and 

(5.62). 

 

5.6.4 State Analysis 

 

As Structure B magnetic integration can be modeled by the discrete magnetics as 

explained in Section 5.6.2, the operation of the ZVS two-inductor boost converter 

with integrated magnetics can be analysed based on the converter in Figure 5.19 if 

the resonant inductance Lrs in Figure 5.20 is converted to its equivalent value Lr 

through Equation (5.204). 

 

After Q1 turns off, the converter will move through up to four possible states, as 

shown in Figure 4.4.  All symbols have the same physical meanings except that Vd 

is now the output capacitor CO1 or CO2 voltage reflected to each of the two combined 

windings that perform as both the input inductor and the transformer primary.  The 

resonant capacitor voltage and the inductor current are the same as those presented 

in Section 4.3.1 and the flux in one outer core leg will be analysed here. 

 

• State (a) ( ) 10 tt ≤≤
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While vC1 increases in this state, φ2 increases but with a reducing rate as long as 

.  When , φEvC <1 EvC >1 2 decreases with an increasing rate.  If the initial flux 

202 )0( Φ=φ , the flux φ2 is: 
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The derivation of Φ20 will be given in due course after the state analysis is 

completed. 

 

• State (b) ( ) 21 ttt ≤≤

 

In this state, the flux φ2 encounters the same situation as in State (a).  The flux φ2 

is: 
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• State (c) ( ) 32 ttt ≤≤

 

In this state, the flux φ2 keeps decreasing with an increasing rate until vC1 

reaches its peak and continues to decrease as long as .  After vEvC >1 C1 falls 
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below E, φ2 again increases at an increasing rate.  The flux φ2 is: 
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• State (d) ( ) 43 ttt ≤≤

 

In this state, the flux φ2 increases linearly as the capacitor voltage vC1 is zero.  

The flux φ2 is: 
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According to the above state analysis, the flux φ2 reaches its maximum φ2,max when 

the capacitor voltage vC1 first reaches E in either States (a) or (b) and reaches its  

minimum φ2,min when the capacitor voltage vC1 drops back to E in State (c).  The ac 

fluxes in the outer core legs 1φ∆  and 2φ∆  can be calculated by integrating 

Equation (5.217) between the times when the flux φ2 reaches φ2,max and φ2,min.  

Therefore, the peak flux φ2,max can be obtained as: 

 

2
2

2max,2

φ
φ

∆
+Φ=                                                 (5.241) 
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The initial flux Φ20 can then be derived by subtracting the flux increase between the 

instant when Q1 turns off and the instant when vC1 first reaches E from the peak flux 

φ2,max. 

 

The flux φ1 in the other outer core leg can be analysed in the same way.  Under 

symmetrical operation, the flux waveforms of the two outer core legs are the same 

except that they are phase shifted with 180°. 

 

Because the transformer primary and secondary windings are loosely coupled in 

Figure 5.20, the resonant inductance can be purely realised from the transformer 

leakage inductance.  In this case, the leakage flux in the transformer is significant 

and the flux paths are not constrained within the core structure.  Considering the 

leakage flux, Structure B magnetic circuit shown in Figure 5.22 can be redrawn in 

Figure 5.23, where ℜa is the reluctance of the transformer leakage flux path in the 

air and φle is the transformer leakage flux, which has the same direction as the flux in 

the centre core leg. 

 

The flux in the centre core leg and the leakage flux are respectively: 

 

lec φφφφ −−= 21                                           (5.242) 

s

srs
le N

iL
=φ                                                (5.243) 
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Figure 5.23 Structure B Magnetic Circuit with the Leakage Flux Path 

 

It is worth mentioning that Equation (5.40) can also be used to solve the flux in the 

centre core leg.  As the resonant inductance is made up of the transformer leakage 

inductance, vs in Equation (5.40) is the positive voltage across the capacitor CO1 or 

the negative voltage across the capacitor CO2 in the voltage-doubler rectifier.  When 

the transformer secondary current is positive,  and φ0>sv c linearly increases and 

when the transformer secondary current is negative, 0<sv  and φc linearly 

decreases. 

 

5.6.5 Theoretical and Experimental Waveforms 

 

The proposed topology is validated experimentally by a 40-W converter with 20-V 

input.  A conversion efficiency of 93% has been recorded by using the mathematics 

functions of a Tektronix TDS5034 oscilloscope equipped with the input and output 

voltage and current probes.  The components used in the converter are listed below: 
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• Inductors L1 and L2 and Transformer T – Core type Philips ETD29 with a 

0.5-mm air gap in each of the two outer core legs, minimum centre core leg 

cross section area 71 mm2 [167], ferrite grade Philips 3F3, Structure B 

magnetic integration, primary and secondary wires: Litz wires made up of 50 

strands of 0.11-mm (0.135-mm overall diameter) wire, primary winding 

 turns, secondary winding 10=pN 13=sN  turns, leakage inductance 

reflected to the transformer secondary HLles µ39.12= . 

• Additional Resonant Capacitors – Cornell Dubilier surface mount mica 

capacitor MC22FA202J, 2 nF, VVdc 100= , 60001=DF  at 500 kHz, 6 nF 

capacitance used. 

• MOSFETs Q1 and Q2 – ST STB50NE10, VVDS 100= , , 

, 

AI D 50=

Ω= 027.0)(onDSR nFCoss 675.0= . 

• Diodes D1 and D2 – Motorola MBRS1100T3 surface mount diodes, 

VVRRM 100= , , AIF 0.1= VVF 75.0= . 

• Capacitors CO1 and CO2 – AVX surface mount capacitors 0.47 µF, 

. VVdc 50=

 

The other parameters used in the converter design are listed below: 

 

• The switching frequency kHzf s 500=  and the duty ratio . 60.0=sD

• ,  and 4.1=k 9.11 =∆ 15.1/ =EVd . 

• HLr µ33.7=  and nFCr 65.6= . 
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The theoretical waveforms of the MOSFET gate voltage, the resonant capacitor 

voltage, the resonant inductor or the transformer secondary current and the fluxes in 

the two outer and the centre core legs under the above operating conditions are given 

in Figure 5.24. 
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Figure 5.24 Theoretical Waveforms 
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Under the above operating conditions, the dc flux is 0.87 µWb and the ac flux is 

2.54 µWb peak to peak in the two outer core legs.  The peak flux density in the outer 

core leg is 60 mT.  The ac flux is 2.30 µWb peak to peak and the peak flux density is 

16 mT in the centre core leg. 

 

The experimental waveforms are shown in Figures 5.25 and 5.26.  From top to 

bottom, Figure 5.25 shows the MOSFET gate voltage, the resonant capacitor voltage 

and the transformer secondary current. 

 

 

Figure 5.25 Experimental Voltage and Current Waveforms 
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The top two waveforms in Figure 5.26 are respectively the ac flux waveforms of φ2 

and φc as recovered by integrating the voltage of a single search turn wound on the 

transformer core leg.  The bottom two waveforms are respectively the resonant 

capacitor voltage vC1 and resonant inductor current is and they are repeated here as 

the references for the flux waveforms. 

 

Math2 5.0uVs 400ns  

Figure 5.26 Experimental AC Flux, Voltage and Current Waveforms 

Channel M1: AC Component of Flux φ2 (5 µWb/div), 

Channel M2: AC Component of Flux φc (5 µWb/div), 

Channel 3: Voltage vC1 (50 V/div), Channel 4: Current is (3 A/div) 
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It can be observed in Figure 5.26 that the flux φ2 decreases when  and 

increases when .  The flux φ

EvC >1

EvC <1 c linearly increases when  and linearly 

decreases when .  The experimental waveforms in Figures 5.25 and 5.26 agree 

very well with the theoretical waveforms in Figure 5.24. 

0>si

0<si

 

5.7 Summary 

 

This chapter systematically studies four magnetic integration solutions for the two-

inductor boost converter, which are able to integrate the core and the winding 

components required by separate magnetic devices and lead to the converter design 

with the minimised size and cost.  In the converter with magnetic integration, the 

equivalent input and transformer magnetising inductances, the dc gain, the dc and ac 

flux densities in the individual core legs and the current ripples in the individual 

windings are thoroughly investigated.  The theoretical waveforms are provided for 

the hard-switched two-inductor boost converter with each of the four integrated 

magnetic structures and the experimental waveforms are provided for the hard-

switched two-inductor boost converter with Structures A and C magnetic 

integration.  The ZVS two-inductor boost converter with Structure B magnetic 

integration is also studied in detail and both the theoretical and the experimental 

waveforms are provided for a prototype 40-W converter. 
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