INVESTIGATION OF THE DYNAMICS OF RAILWAY BOGIES SUBJECTED TO TRACTION / BRAKING TORQUE

Yunendar Aryo Handoko

A Thesis Submitted in Partial Fulfilment for the Award of the Degree of Doctor of Philosophy (PhD)

> Centre for Railway Engineering Central Queensland University Australia

> > September 2006

ABSTRACT

The limitations of current simulation packages in addressing the true longitudinal behaviour of railway bogie dynamics during braking/traction has prompted the development of a Rail Bogie Dynamics (RBD) program in this thesis. The RBD program offers novel features for the calculation of the speed profile as a function of the brake torque as well as explicitly determining wheelset angular velocity. With such capability, the speed profile is no longer treated as an input calculated as a priori as required by most of the current simulation systems. The RBD program has been developed using a formulation that includes the wheelset pitch degree of freedom explicitly with a coordinate reference system that is fixed in space and time. The formulation has made the simulation of the bogie dynamics during braking/traction possible in a natural way using the brake/traction torque as the input and the resulting speed profile as the output without any need for working out the speed profile as a priori. Consequently, severe dynamics during braking such as the wheelset skid and the onset of wheel climb derailment can be modelled and critical parameters investigated using the RBD program.

The RBD program has been validated, where possible, through a series of simulations using a commercial software package (VAMPIRE). For cases which cannot be simulated by VAMPIRE such as the wheelset skid, a novel experimental program has been designed and commissioned in the Heavy Testing Laboratory of the Central Queensland University as reported in this thesis. One of the possible applications of the RBD program in examining the effect of asymmetric brake shoe force in bogies equipped with one-side push brake shoe arrangement is illustrated in this thesis. It is believed that the model and RBD program will have significant benefit in understanding the true longitudinal behaviour of wagons in suburban passenger trains that operate under braking/ traction torques for most of their travel. Similar studies will also be useful to freight train wagon dynamics during entry and exit of speed restriction zones and tight curves.

TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	viii
LIST OF TABLES	xvi
LIST OF SYMBOLSx	vii
LIST OF ABREVIATIONSxx	xiii
ACKNOWLEDGEMENTxx	xiv
DECLARATIONxx	xvi
PUBLISHED WORKxx	vii
1. INTRODUCTION	1
1.1. AIM AND OBJECTIVES	1
1.2. SCOPE AND LIMITATION	2
1.3. OUTLINE OF THE THESIS	3
2. LONGITUDINAL DYNAMICS OF RAILWAY BOGIES: A LITERATURE	£
REVIEW	6
2.1. INTRODUCTION	6
2.1.1. Basic Axis System and Terminologies	6
2.1.2. Wagon Assembly and Tracks Construction	7
2.2. DYNAMICS OF THE BOGIES	11
2.2.1 Principles of Wheelset Dynamics	11
2.2.2. State-of-the-art of the Study of Wagon and Bogie Dynamics	15
2.3. THEORY OF WHEEL-RAIL ROLLING CONTACT	22

	2.3.1. The Concept of Creep	23
	2.3.2. The Development of Wheel-Rail Rolling Contact Theory	24
	2.4. FREIGHT WAGON BRAKING AND TRACTION SYSTEM	
	2.4.1. Calculation of Brake Shoe Force	
	2.4.2. Brake Application and Release Timing	31
	2.4.3. Traction	
	2.5. LONGITUDINAL DYNAMICS OF BOGIES AND WAGONS	
	2.5.1. Basic Principle of Braking Dynamics	
	2.5.2. Skid and Friction Coefficient	35
	2.5.3. Dynamics Due to Traction	
	2.5.4. State-of-the-art of Braking and Traction Dynamics Research	
	2.6. WAGON SIMULATION SOFTWARE PACKAGES	43
	2.6.1. Reference Coordinate System and Formulation of Equation of	Motion44
	2.7. SUMMARY	48
3.	DYNAMICS OF RIGID BODIES - A GENERALISED MODELLIN	G
	APPROACH	50
	3.1. INTRODUCTION	
	3.2. FORMULATION	51
	3.2.1. Coordinate System and Transformation	51
	3.2.2. Velocity and Acceleration Analysis	53
	3.2.3. Mass Matrices	56
	3.2.4. Generalised Forces	58
	3.2.5. Contact between Two Rigid Bodies: Definition and Constraint	
	3.2.6 Augmented System Dynamic Equations	

	3.3. APPLICATION: WHEEL-RAIL CONTACT	71
	3.3.1. Parameterisation of the Wheel-Rail Contact Surfaces	72
	3.3.2. Spline Representation of Wheel and Rail Profiles	74
	3.3.3. Wheel-Rail Contact Parameters	75
	3.3.4. Normal Contact Force	76
	3.3.5. Contact Area	77
	3.3.6. Creep Forces	79
	3.3.7. Flange Contact	
	3.4. SOLUTION OF SYSTEM EQUATIONS	
	3.4.1. Solution of the Non-linear Algebraic Constraint Equation	
	3.5. ALGORITHM FOR RAILWAY BOGIE DYNAMIC ANALYSIS	
4.	. DYNAMICS OF A WHEELSET WITHIN A BOGIE FRAME	91
	4.1. INTRODUCTION	91
	4.2. DESCRIPTION OF MODELLED SYSTEM	92
	4.3. WHEEL AND RAIL PROFILES	96
	4.4. SIMULATION AT CONSTANT SPEED	
	4.5. SPEED PROFILE - EFFECT OF LONGITUDINAL FORCES	
	4.6. LATERAL DYNAMICS UNDER VARIABLE SPEED	113
	4.7. WHEELSET DYNAMICS UNDER HEAVY BRAKING	117
	4.8. SUMMARY AND CONCLUSION	119
5.	. DYNAMICS OF SIMPLIFIED TWO-AXLE BOGIES	121
	5.1. INTRODUCTION	
	5.2. DESCRIPTION OF MODELLED SYSTEM	121

5.3.1. Response to Lateral Track Irregularities	
5.3.2. Response to Track Vertical Irregularity	
5.3.3. Response to Track Cross Level Irregularity	
5. 4. APPLICATION OF LONGITUDINAL FORCE	144
5.4.1. Speed Profile	144
5.4.2. Bogie Pitch due to Longitudinal Force Application	148
5.4.3. Bogie Lateral Dynamics under Variable Speed	150
5.5. BOGIE DYNAMICS UNDER HEAVY BRAKING	158
5.6. SUMMARY AND CONCLUSION	
6. EXPERIMENTAL VALIDATION OF THE EFFECT OF BRAKING	TORQUE TO
BOGIE DYNAMICS: PART A. DESIGN OF EXPERIMENTAL PR	ROGRAM
6.1. INTRODUCTION	
6.2. EXPERIMENTAL DESIGN	
6.2.1. The Concept	
6.2.2. Track Section and Estimated Speed Profile	167
6.2.3. Specification of Equipment	
6.3. EQUIPMENT, INSTALLATION, AND DATA ACQUISITION	177
6.3.1. Brake Force Measurement – Strain Gauge	177
6.3.2. Longitudinal Movement Measurement – Magnetic Linear Enco	oder179
6.3.3. Wheel Rotation Measurement – Shaft Encoder	
6.3.4. Accelerometer Measurements	
6.3.5. Wheel-Rail Profile Measurement – MiniProf	

6.3.7. Rail Friction Coefficient Measurement - Tribometer	186
6.3.8. Data Acquisition and Data Analysis	187
6.3.9. Brake Controller	
6.3.10. Complete Test Setup	190
6.4. SUMMARY	191
7. EXPERIMENTAL VALIDATION OF THE EFFECT OF BRAKING	FORQUE TO
BOGIE DYNAMICS: PART B. EXPERIMENTAL RESULTS	193
7.1. INTRODUCTION	193
7.2. EXPERIMENT CASE #1 (P=130 KPA)	194
7.2.1. Primary Data	195
7.2.2. Derived Data	199
7.3. EXPERIMENT CASE #2 (P=150 KPA)	204
7.3.1. Primary Data	204
7.3.2. Derived Data	207
7.4. EXPERIMENT CASE #3 (P=180 KPA)	212
7.4.1. Primary data	212
7.4.2. Derived Data	215
7.5. SUMMARY AND CONCLUSION	220
8. EXPERIMENTAL VALIDATION OF THE EFFECT OF BRAKING 7	FORQUE TO
BOGIE DYNAMICS: PART C. COMPARISON WITH THE SIMUL	ATION
	223
8.1. INTRODUCTION	223
8.2. MODELLING OF THE BOGIE USED IN THE EXPERIMENT	223
8.2.1. Bogie Properties	223

8.2.2. Wheel and Rail Profile	
8.3. COMPARISON OF THE RESULTS	
8.3.1. Simulation of Case #1 (Brake Pressure = 130 kPa)	
8.3.2. Simulation of Case #2 (Brake Pressure = 150 kPa)	
8.3.3. Simulation of Case #3 (Brake pressure = 180 kPa)	232
8.4. SUMMARY AND CONCLUSION	235
9. APPLICATION OF THE RBD PROGRAM: EFFECT OF ASYMME	TRIC BRAKE
FORCES TO BOGIE DYNAMICS	237
9.1. INTRODUCTION	237
9.2. DEFINITION OF ASYMMETRIC BRAKING	237
9.3. CASES STUDIED	239
9.4. RESULTS	240
9.4.1. Asymmetric Braking of Leading Wheelset	240
9.4.2. Asymmetric Brake on the Trailing Wheelset	245
9.5. SUMMARY AND CONCLUSION	248
10. SUMMARY AND CONCLUSIONS	
REFERENCES	
APPENDIX I	I
APPENDIX II	III
APPENDIX III	IV
APPENDIX IV	VIII

LIST OF FIGURES

Figure 2.1. Six degrees of freedom of wagon movement	7
Figure 2.2. Typical design of three-piece bogie (Standard Car Truck Company (200	0))8
Figure 2.3. Typical design of Y25 bogie (K Industrier AB Website)	8
Figure 2.4. Bogie with primary and secondary suspension (Ikamoto (1998))	9
Figure 2.5. A Typical Track Structure (Profilidis (2000))	10
Figure 2.6. Wheelset on the track (Ikamoto (1998))	12
Figure 2.7. Wheelset Kinematic Oscillation (Wickens (2003))	13
Figure 2.8. Conical wheelset on a curve (Wickens (2003))	14
Figure 2.9. Creepage (Dukkipati (2000))	23
Figure 2.10. Creepage - Creep Force Curves (Shen et al. (1983))	26
Figure 2.11. Wheel-rail rolling contact theories and their interrelation (Kalker (1991	1))27
Figure 2.12. Freight wagon air brake system (Bureau (2002))	29
Figure 2.13. Typical bogie brake rigging	30
Figure 2.14. Forces at the braked wheel	34
Figure 2.15. Free body diagram of braked wheel	35
Figure 2.16. Adhesion force against slip velocity (Ohishi et al. (2000))	37
Figure 2.17. Friction coefficient against sliding speed	38
Figure 2.18. Wheel-rail friction coefficient against slip (Balas (2001))	39
Figure 2.19. Curving diagram of a wheelset (Suda and Grencik (1996))	41
Figure 2.20. The description of the motion of a body in a moving reference frame	45
Figure 2.21. Stress distribution in the contact area during braking (Dukkipati (2000))) 48
Figure 3.1. Coordinates of rigid body	52
Figure 3.2. Rigid body subjected to external force	58
Figure 3.3. Linear spring and damper	60
Figure 3.4. Torsional spring-damper element	62
Figure 3.5. Two rigid bodies in contact	64

Figure 3.6. Tangent and normal vectors to the body surface at a contact point P^k 6	5
Figure 3.7. Wheel tread and flange surface	2
Figure 3.8. Rail head surface	'3
Figure 3.9. Principal Radius of Curvature of the Wheel and the Rail	'8
Figure 3.10. Distribution of normal and tangential stress according to Polach's theory8	60
Figure 3.11. Flow chart of railway bogie dynamic analysis	0
Figure 4.1. A wheelset within a bogie frame	13
Figure 4.2. Technical drawing of the wheel and the rail profile	7
Figure 4.3. Spline curve of the wheel profile	17
Figure 4.4. Derivatives of the wheel profile curve	8
Figure 4.5. Spline curve of the rail profile	19
Figure 4.6. Derivatives of the wheel profile curve	19
Figure 4.7. Wheelset on narrow gauge track 10	0
Figure 4.8. Rolling radius difference	0
Figure 4.9. Lateral displacements - RBD Program at V=15 m/s 10	12
Figure 4.10. Lateral displacement - VAMPIRE at V=15m/s 10	12
Figure 4.11. Creep forces at the right W/R contact point -RBD Program at V=15 m/s10)4
Figure 4.12. Creep forces at the W/R right contact point - VAMPIRE at V=15m/s 10	4
Figure 4.13. Lateral displacements - RBD Program at V=25 m/s 10	15
Figure 4.14. Lateral displacement - VAMPIRE at V=25m/s 10	15
Figure 4.15. Creep forces at the right W/R contact point - RBD program at V=25 m/s1	06
Figure 4.16. Creep forces at the right W/R contact point - VAMPIRE at V=25 m/s 10	16
Figure 4.17. Lateral displacements calculated by RBD program at V=30 m/s 10	17
Figure 4.18. Lateral displacements calculated by VAMPIRE at V=30 m/s 10	17
Figure 4.19. Creep forces at the right W/R contact point - RBD Program at V=30 m/s1	08
Figure 4.20. Creep forces at the right W/R contact point - VAMPIRE at V=30 m/s 10	18
Figure 4.21. Traction/Braking Torque Profile 11	1
Figure 4.22. Speed Profile	1

Figure 4.23. Travel distance and wheelset rotation
Figure 4.24. Speed profile and wheelset lateral displacement under braking calculated by the RBD program
Figure 4.25. Wheelset lateral displacement during braking calculated by VAMPIRE115
Figure 4.26. Speed profile and wheelset lateral displacement during traction calculated by the RBD program
Figure 4.27. Wheelset lateral displacement during traction calculated by VAMPIRE 116
Figure 4.28. Skid at wheel-rail friction coefficient $\mu_r = 0.3$
Figure 4.29. Skid at wheel rail friction coefficient $\mu = 0.1$
Figure 5.1. Simplified two-axle bogie
Figure 5.2. Parameters representing sinusoidal track irregularity 126
Figure 5.3. Input Lateral Track Irregularity 127
Figure 5.4. Wheelset lateral displacement - RBD program at $V = 15$ m/s 128
Figure 5.5. Wheelset lateral displacement - VAMPIRE at V = 15m/s 128
Figure 5.6. Frequency spectrum of the leading wheelset lateral oscillation at 15 m/s 129
Figure 5.7. Bogie frame yaw at 15 m/s 130
Figure 5.8. Wheelset lateral displacement calculation by RBD program at 25 m/s 131
Figure 5.9. Wheelset lateral displacement calculation by VAMPIRE at 25 m/s 131
Figure 5.10. Frequency spectrum of the leading wheelset lateral oscillation at 25 m/s132
Figure 5.11. Bogie frame yaw 25 m/s
Figure 5.12. Input Track Vertical Irregularity
Figure 5.13. Bogie frame vertical displacement calculated by RBD program
Figure 5.14. Bogie frame vertical displacement calculated by VAMPIRE 135
Figure 5.15. Frequency spectrum of bogie frame vertical oscillation
Figure 5.16. Axle load due to vertical irregularity calculated by RBD program 137
Figure 5.17. Axle load due to vertical irregularity calculated by VAMPIRE 138
Figure 5.18. Cross level plateau irregularity and its parameters
Figure 5.19. Input cross level irregularity 140
Figure 5.20. Bogie frame roll calculated by RBD program

Figure 5.22. Wheel load due to cross level irregularity calculated by RBD program. 14	••
	42
Figure 5.23. Wheel load due to cross level irregularity calculated by VAMPIRE 14	43
Figure 5.24. Traction/Braking torque profile14	44
Figure 5.25. Output longitudinal acceleration	46
Figure 5.26. Output speed profile	46
Figure 5.27. Output wheelset angular velocity (rad/s) 14	47
Figure 5.28. Travel distance	47
Figure 5.29. Bogie frame pitch calculated by RBD program 14	49
Figure 5.30. Bogie frame pitch calculated by VAMPIRE	49
Figure 5.31. Input traction torque (normal application) and output speed profile calculated by RBD program	51
Figure 5.32. Input lateral track irregularity	51
Figure 5.33. Wheelset lateral displacement during normal traction calculated by the R program	BD 52
Figure 5.34. Wheelset lateral displacement during normal traction calculated by VAM	1 PIRE
	52
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program 11 Figure 5.36. Wheelset lateral displacement during quick traction calculated - RBD pro	52 ted by 53 ogram 54
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 ogram 54 54
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 ogram 54 54 55
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 53 54 54 55 55 56
 Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 53 54 54 55 55 56 56
 Figure 5.35. Input traction torque (quick application) and output speed profile calculate RBD program Figure 5.36. Wheelset lateral displacement during quick traction calculated - RBD program Figure 5.37. Wheelset lateral displacement during quick traction - VAMPIRE Figure 5.38. Input braking torque (normal application) and output speed profile Figure 5.39. Wheelset lateral displacement during normal braking - RBD program. Figure 5.40. Wheelset lateral displacement during normal braking – VAMPIRE Figure 5.41. Input braking torque (quick application) and output speed profile 	52 ted by 53 53 54 54 55 56 56 56 57
 Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 54 54 55 56 56 57 58
 Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 54 54 55 56 56 56 57 58 58
Figure 5.35. Input traction torque (quick application) and output speed profile calculat RBD program	52 ted by 53 54 54 55 56 56 57 58 58 58 60

Figure 5.46. Skid on both wheelsets	162
Figure 5.47. Lateral displacement, skid on both wheelsets	162
Figure 6.1. Sketch of traction test at British Railway Electrical Laboratory (And (1986))	rews 166
Figure 6.2. Photo of traction test at British Railway Electrical Laboratory (Andre	ews (1986)) 167
Figure 6.3. Track section and estimated speed profile	168
Figure 6.4. Schematic diagram of QR30 brake system	169
Figure 6.5. Forces acting on brake system of QR30 bogie	170
Figure 6.6. Distribution of brake normal force	171
Figure 6.7.Wheelset connection to side frame	175
Figure 6.8. Axial acceleration to be measured on the bogie	176
Figure 6.9. Modification (cutting) of the brake beam slider	177
Figure 6.10. Tangential brake force measurement	178
Figure 6.11. Brake beam stopper of the non-braked wheelset	179
Figure 6.12. Brake cylinder and brake rod with strain gauge	179
Figure 6.13. LIMES magnetic linear encoder	180
Figure 6.14.Sketch of longitudinal travel distance measurement	181
Figure 6.15.The carriage and guide beam for linear encoder	181
Figure 6.16. Hollow shaft encoder	182
Figure 6.17. Shaft encoder and accelerometer installation through modification	of axle box 183
Figure 6.18. Accelerometer and CRC Butterworth filter	184
Figure 6.19. MiniProf tool for measuring the wheel profile	184
Figure 6.20. Measurement of the rail profile using MiniProf	185
Figure 6.21. Track welding	185
Figure 6.22. Track grinding	186
Figure 6.23. Portable Tribometer	187
Figure 6.24. DAQ computer mounted on the bogie	188
Figure 6.25. Diagram of pneumatic system used for brake controller	189

Figure 6.26. Brake emergency switch using string	189
Figure 6.27. Instrumented Bogie with DAQ ready for commissioning	190
Figure 7.1. Brake cylinder pressure and normal forces in the brake rods, Case #1.	196
Figure 7.2. Tangential brake force in the brake beam hangers, Case #1	196
Figure 7.3. Longitudinal accelerations measured by accelerometers, Case #1	197
Figure 7.4. Lateral accelerations measured by accelerometers, Case #1	198
Figure 7.5. Vertical accelerations measured by accelerometers, Case #1	198
Figure 7.6. Travel distance and rotation of wheelsets, Case #1	199
Figure 7.7. Brake torques applied to the trailing wheelset, Case #1	200
Figure 7.8. Speed profile and wheelsets angular velocity, Case 1	201
Figure 7.9. Accelerations calculated using Linear Encoder dataset, Case #1	202
Figure 7.10. Difference between the longitudinal velocity (calculate from LIMES) circumferential velocity of the braked wheelset, Case #1) and the 203
Figure 7.11. Difference between the longitudinal velocity (calculated from angula revolution of unbraked wheelset) and the circumferential velocity of t wheelset, Case #1	r he braked 203
Figure 7.12. Brake cylinder pressure and forces in the brake rods, Case #2	205
Figure 7.13. Tangential brake force in the brake beam hangers, Case #2	205
Figure 7.14. Accelerations measured by accelerometers, Case #2	206
Figure 7.15. Travel distance and rotation of wheelsets, Case #2	207
Figure 7.16. Brake torque applied to the trailing wheelset, Case #2	208
Figure 7.17. Speed profile and wheelsets angular velocity, Case #2	209
Figure 7.18. Accelerations calculated using Linear Encoder dataset, Case #2	210
Figure 7.19. Difference between the longitudinal velocity (calculated from LIMEs circumferential velocity of the braked wheelset, Case #2	S) and the 211
Figure 7.20. Difference between the longitudinal velocity (calculated from angula revolution of unbraked wheelset) and the circumferential velocity of t wheelset, Case #2	r he braked 211
Figure 7.21. Brake cylinder pressure and forces in the brake rods, Case #3	213
Figure 7.22. Tangential brake force in the brake beam hangers, Case #3	213
Figure 7.23. Acceleration measured by accelerometers, Case #3	214

Figure 7.24. Travel distance and wheelsets rotation, Case #3	. 215
Figure 7.25. Brake torques applied to trailing wheelset, Case #3	. 216
Figure 7.26. Speed profile and wheelsets angular velocity, Case #3	. 216
Figure 7.27. Longitudinal acceleration calculated from LIMES, Case 4	. 217
Figure 7.28. Difference between the longitudinal velocity (calculated from LIMES circumferential velocity of the braked wheelset, Case #3) and the . 218
Figure 7.29.Difference between the longitudinal velocity (calculated from angular revolution of unbraked wheelset) and the circumferential velocity of th wheelset, Case #3	e braked . 218
Figure 8.1. Wheel profile used in experiment (LW3) compared to LW2 profile	. 225
Figure 8.2. Rail profile used in experiment compare to UIC-60 profile	. 225
Figure 8.3. Input brake torque for simulation of Case #1	. 226
Figure 8.4. Simulation output of Case #1: deceleration	. 227
Figure 8.5. Simulation output of Case #1: speed profile and angular velocity	. 227
Figure 8.6. Simulation output of Case #1: slip	. 228
Figure 8.7. Input brake torque for simulation of Case #2	. 229
Figure 8.8. Simulation output of Case #2: deceleration	. 230
Figure 8.9. Simulation output of Case #2: speed profile and angular velocity	. 231
Figure 8.10. Simulation output of Case #2: slip	. 232
Figure 8.11. Input brake torque for simulation of Case #3	. 232
Figure 8.12. Simulation output of Case #3: deceleration	. 233
Figure 8.13. Simulation output of Case #3: speed profile and angular velocity	. 234
Figure 8.14. Simulation output of Case #3: slip	. 234
Figure 9.1. Typical Brake rigging arrangement	. 238
Figure 9.2. Asymmetric brake shoes normal forces	. 239
Figure 9.3. 25% error on leading wheelset, 10s brake application time (the least sev case)	vere . 241
Figure 9.4. 75% error on leading wheelset, 1s brake application time (the most seve	ere case) . 241
Figure 9.5. Wheelset lateral displacement and W/R contact point	. 243

Figure 9.6.	25% error on trailing wheelset, 10s brake application time (the least severe	
-	case)	
Figure 9.7.	75% error on trailing wheelset, 1s brake application time (the most severe ca	ise)
-		

LIST OF TABLES

Table 4.1. Spring and damper characteristics	94
Table 4.2. Inertia properties of the wheelset and the sprung mass	94
Table 5.1. Spring and damper characteristics	125
Table 5.2. Inertia properties of the wheelsets and the sprung mass	125
Table 6.1. Comparison of measurement devices for longitudinal and angular motion	174
Table 6.2. Specification of linear encoder	180
Table 6.3. Specification of shaft encoder	182
Table 6.4. Accelerometer specification	183
Table 7.1. Cases of the experiment	193
Table 8.1. Inertia properties of the bogie components used in the experiment	224
Table 8.2. Dimensions of bogie used in the experiment	224
Table 9.1. Cases of Asymmetric Braking	240
Table 9.2. Results of asymmetric braking on leading wheelset at initial speed 25 m/s	244
Table 9.3. Results of asymmetric braking on trailing wheelset at initial speed 15 m/s	247

LIST OF SYMBOLS

Scalar Symbols

a_e	Longitudinal semi axis of the contact ellipse
b_{e}	Lateral semi axis of the contact ellipse
a _a	Acceleration (magnitude)
a_b	Deceleration (magnitude)
b_a	Half of the distance between accelerometers in the left and the right axle boxes
С	Proportionality constant of Polach's formulation
c_{11}, c_{22}, c_{23}	Kalker's coefficient
С	Damping constant
C _r	Rotational damping constant
dv _{sensor}	Resolution tolerance of the sensor measuring longitudinal movement
$d\Omega_{sensor}$	Resolution tolerance of the sensor measuring the wheelset rotation
D	Effective diameter of brake piston
F_{B}	Brake shoe force (magnitude)
$F_{\it Beff}$	Effective brake shoe force (magnitude)
F _{CR}	The creep forces resultant (magnitude)
F _{CT}	Brake cylinder piston thrust (magnitude)
F_{R}	Magnitude of counter force exerted by slack adjuster
F_{s}	Magnitude of spring-damper force
F_T	Brake shoe tangential force (magnitude)
F_{x}	Magnitude of longitudinal force at contact point
F_{π}	Magnitude of vertical force at contact point

g	Constant of gravitation
<i>i</i> _t	Total brake rigging ratio
\dot{i}_b	Bogie brake rigging ratio
J_y	Polar moment of inertia
k _s	Spring constant
k _r	Rotational spring constant
k _{ir}	Parameter of track irregularities
k_{y_rail}	Rail lateral stiffness
L_{H}	Klingel hunting wavelength
l	Current spring length
l_o	Undeformed length of the spring
т	Body mass
$N_{_W}$	Wheel load
n	Number of system coordinates
n _c	Number of constraint equations
p_c	Air pressure in the brake cylinder
Q	Normal load
R	Radius of curve
r _w	Nominal wheel radius
s_1^w, s_2^w	Surface parameters of the wheel
s_1^r, s_2^r	Surface parameters of the rail
S _a	Longitudinal distance travelled during acceleration
S _b	Longitudinal distance travelled during braking
T_B	Brake Torque (magnitude)
T^{ij}	Magnitude of the torque exerted by rotation spring element between body i and body j
V^i	Volume of the rigid body <i>i</i>

V	Longitudinal velocity
V _C	Circumferential velocity
y_f	Flange clearance
${\mathcal Y}_w$	Wheelset lateral displacement
Δ_{ir}	Amplitude of track irregularities
$\xi_{analytical}$	Analytical value of longitudinal creepage
ξ_x	Longitudinal creepage
$\xi_{ m exp}$	Longitudinal creepage measured during experiment
ξ_y	Lateral creepage
ξ_{yc}	Lateral creepage after incorporation of spin
ξ_{sp}	Spin creepage
ξ_t	Total creepage (resultant of lateral and longitudinal creepages)
ω	Angular velocity (magnitude)
λ_w	Wheel conicity
η	Brake rigging efficiency
ρ	mass density
μ_b	Brake shoe friction coefficient
μ_r	Wheel-rail friction coefficient
$ heta^{ij}$	Magnitude of relative rotation between body i and body j
$\theta_0^i, \theta_1^i, \theta_2^i, \theta_3^i$	Euler parameters
Ψ	Yaw rotation
ϕ	Roll rotation
τ	Tangential stress
σ	Normal stress
φ	Gradient of tangential stress curve in the area of adhesion

Vector-Matrix Symbols

\mathbf{A}^{i}	Transformation matrix of the rigid body <i>i</i>
\mathbf{A}^{j}	Transformation matrix of the rigid body j
С	Contact constraint (set of equations)
C _q	Sub-Jacobian matrix of constraint equation associated with generalised coordinates
C _s	Sub-Jacobian matrix of constraint equation associated with surface parameters
$\mathbf{F}_1^i, \mathbf{F}_2^i, \dots \mathbf{F}_{n_f}^i$	Set of forces acting on the rigid body <i>i</i>
\mathbf{G}^{i}	Matrix that relates the angular velocity vector of body i and time derivatives of Euler parameters of the body
\mathbf{G}^{j}	Matrix that relates the angular velocity vector of body j and time derivatives of Euler parameters of the body
$\overline{\mathbf{I}}_{\theta\theta}^{i}$	Inertia tensor of the rigid body <i>i</i>
\mathbf{M}^{i}	Mass matrix of the rigid body <i>i</i>
$\mathbf{M}_1^i, \mathbf{M}_2^i, \dots \mathbf{M}_{n_m}^i$	Set of moments acting on the rigid body <i>i</i>
$\mathbf{m}_{\scriptscriptstyle RR}^{i}$	Inertia matrix of body i associated with the translation of the body reference
$\mathbf{m}^i_{ heta heta}$	Inertia matrix of body i associated with the rotation of the body reference
$\mathbf{m}^i_{ heta heta}$	Inertia coupling between the translation and rotation of the body <i>i</i> reference
$\overline{\mathbf{n}}^{ik}$	Normal vectors to the surface of body i at contact point k
$\overline{\mathbf{n}}^{jk}$	Normal vectors to the surface of body j at contact point k
Q	Sum of the vectors of generalized applied forces and quadratic velocity vector

$\mathbf{Q}_{\mathbf{d}}$	Vector that absorbs the quadratic term in the first order time- derivatives of the generalised coordinates
\mathbf{Q}_{e}	Vector of generalized applied force
\mathbf{Q}_R^i	Vector of generalised forces associated with translational coordinates of body i
$\mathbf{Q}^i_ heta$	Vector of generalised forces associated with rotational coordinates of body i
\mathbf{Q}_{v}	Quadratic velocity vector
q	Vector of generalised coordinates
\mathbf{q}_d	Vector of dependent generalised coordinates
\mathbf{q}_i	Vector of independent generalised coordinates
\mathbf{R}^{i}	Global position vector of the origin of the body i reference frame
\mathbf{R}^{j}	Global position vector of the origin of the body j reference frame
\mathbf{r}_p^{ij}	Vector position of point P^i at body <i>i</i> with respect to point P^j at body <i>j</i>
S	Vector of surface parameters
S _d	Vector of dependent surface parameters
S _i	Vector of independent surface parameters
$\overline{\mathbf{t}}_{l}^{ik}$	Tangent vectors to the surface of body i at contact point k , $(l = 1, 2)$
$\overline{\mathbf{t}}_{l}^{jk}$	Tangent vectors to the surface of body j at contact point k , $(l = 1, 2)$
$\overline{\mathbf{u}}_{p}^{i}$	Position vector of the point P^i with reference to the body <i>i</i> coordinate system
$\overline{\mathbf{u}}^{ik}$	Position vector of the contact point k with reference to the rigid body i coordinate system

$\overline{\mathbf{u}}^{jk}$	Position vector of the contact point k with reference to the rigid body j coordinate system
λ	Vector of Lagrange multiplier
$\boldsymbol{\omega}^{i}$	Angular velocity vector of the rigid body <i>i</i>
$\mathbf{\omega}^{j}$	Angular velocity vector of the rigid body j

LIST OF ABREVIATIONS

AAR	Association of American Rail Roads
ABS	Anti-lock Braking System
BR	British Railway
BS	British Standard
CQU	Central Queensland University
CRE	Centre for Railway Engineering
DAQ	Data Acquisition
HTL	Heavy Testing Laboratory
INKA	Industri Kereta Api (Indonesian Railway Industry)
IRF	Inertial Reference Frame
RBD	Rail Bogie Dynamic
SHE	Shen-Hedrick-Elkins (theory of wheel-rail rolling contact)
TRF	Track-following Reference Frame
TTL Signal	Transistor - Transistor Logic Signal
UIC	Union Internationale des Chemins de fer (International Union of
	Railways)
3D-WTSD	Three Dimensional Wagon Track System Dynamic (a 3D model of
	wagon-track interaction by Sun & Dhanasekar (2001))

ACKNOWLEDGEMENT

It is my pleasure to acknowledge those who have encouraged and supported me in many ways during my PhD research studies.

Firstly I would like to express my earnest gratitude to my supervisor Dr. Manicka Dhanasekar, Associate Professor and Director, Centre for Railway Engineering (CRE), Central Queensland University (CQU) for his valuable discussion and guidance throughout the three and half years for enabling me to write this thesis. He has supported me both in the technical and personal matters during my stay with the CRE.

I should thank Ir. Roos Diatmoko, Director of Indonesian Railway Industry (PT INKA), for his support and continuous encouragement since I started working there in 1996. I also thank the management board and my colleagues in PT INKA for their support.

I also record my special thanks to Florian Sumpf, an exchange student from The University of Aachen, Germany who actively participated in the designing of the bogie braking experiment. The technical assistance related to experimental work in the Heavy Testing Laboratory was thankfully received from a range of technical staff of CQU, Bernard Jansen, Gary Hoare, Ian Major, Grant Caynes, Trevor Ashman, Ken Morrison and Dr. Marcel Frank.

The support from Queensland Railway (QR) that enabled me to carry out the full scale bogie brake experiment is thankfully acknowledged. Special thanks are due to QR Engineers Andrew Nelmes and Bruce Brymer, and a range of other QR staff who installed the track, and also measured various parameters both of the track and bogie components. Without QR support this experiment would not have been possible.

xxiv

I also thank Dr. Fuji Xia, Dr. Yan Quan Sun, Dr. Colin Cole, Dr. Jian Jun Han, Mitch McClanachan and Scott Simson for valuable technical discussions provided on many occasions. Special thanks to Tim McSweeney and Scott Simson for spending their valuable time for providing very useful suggestions for improvement of my PhD thesis.

Finally, I should thank my family, especially my parents and my wife, Sari Wulandari, for their encouragement, patience and support; and also to my children, Dhila, Hanif and Syifa, as they are my inspiration.

I acknowledge the financial support offered by the CRE, and PT INKA.

DECLARATION

The work contained in this thesis is a direct result of the original work carried out by me and has not been submitted for the award of a degree or diploma at any other tertiary institution in Australia or overseas.

Signed:_____

Date_____

Yunendar Aryo Handoko

Author

PUBLISHED WORK

As a direct result of the research reported in this thesis the following papers have either been published or are under review:

- Yunendar Handoko and Manicka Dhanasekar (2006), An Inertial Reference Frame Method for the Simulation of the Effect of Longitudinal Force to the Dynamics of Railway Wheelsets, (Accepted to be published in *International Journal of Non Linear Dynamics*).
- Yunendar Handoko and Manicka Dhanasekar (2006), Simulation of Railway Bogie Skid, (*Journal of Rail and Rapid Transit, Proceedings of Institution of Mechanical* Engineer, Part F, under review)
- 3. Yunendar Handoko and Manicka Dhanasekar (2006), Simulation of Bogie Dynamics under Heavy Braking, (Accepted to be published and presented in the *Proceedings of the Conference on Railway Engineering* in Melbourne)

During the completion of the research higher degree program at Central Queensland University the author has also co-authored the following papers:

- Y. Handoko, F. Xia, and M. Dhanasekar, Effect of Asymmetric Brake Shoe Force Application on Wagon Curving Performance, *Vehicle System Dynamic Supplement* 41, Proceeding of IAVSD Conference in Japan, 2004, p113-122.
- M. McClanachan, Y. Handoko, M. Dhanasekar, D. Skerman, and J. Davey, Modelling Freight Wagon Dynamics, *Vehicle System Dynamic Supplement 41*, *Proceeding of IAVSD Conference* in Japan, 2004, p438-447.

1. INTRODUCTION

Suburban passenger trains operate under braking / traction condition during most of their travel. Most heavy haul and long haul trains are also operated under similar condition when they enter and exit speed restriction zones and/or tight curves. Although braking/ traction torques modify the operating speed in a complex manner, which could only be realistically evaluated using rigorous calculations, current simulations are routinely carried out for constant speed conditions with the speed profile input as a priori.

With a view to providing a simulation platform which truly accounts for traction/braking torque induced dynamics of wagons, this thesis formulates a model that explicitly accounts for the wheelset pitch degree of freedom. The formulation is provided with reference to a coordinate system that is fixed in space and time. The formulation enables the simulation to be performed in a natural way using the brake/traction torque as the input and the resulting speed profile as the output without any need for working out the speed profile as a priori. A MATLAB computer program titled Rail Bogie Dynamics (RBD) program which uses the formulation is developed and reported in this thesis.

1.1. AIM AND OBJECTIVES

The aim of the thesis is to formulate a model with the potential for simulating true longitudinal dynamics of bogies under braking/traction torque. This aim is achieved through the enabling objectives listed below:

- 1. Review the dynamics of rail bogies including the effect of braking/traction through literature study.
- 2. Review the theory of wheel-rail rolling contact available in the literature to incorporate suitable criteria in the model developed.
- Formulate the system dynamic equations and their solution technique capable of truly modelling the longitudinal dynamics of bogies subjected to braking/traction torque.
- 4. Develop the Rail Bogie Dynamics (RBD) program based on the formulation and solution technique as per objective 3.
- 5. Validate the RBD program against VAMPIRE where possible
- 6. Validate the other and most severe cases using a full-scale laboratory test.
- Apply the RBD program to evaluate the severe dynamics of bogies induced due to asymmetric brake shoe forces.

1.2. SCOPE AND LIMITATION

The scope of this thesis is to investigate the dynamics of railway bogies subjected to traction/braking torque. The severe bogie dynamics involving wheelset skid will be investigated through simulation and experiments. The effect of the asymmetric braking due to error in the distribution of the brake shoe normal force within a single wheelset in bogies equipped with one-side push brake shoe will also be examined.

The limitations are:

- i. Only tangent track will be considered.
- ii. Only simple and most common bogies will be considered.
- iii. Whole wagon dynamics will not be considered.

1.3. OUTLINE OF THE THESIS

This thesis contains 10 chapters that cover the formulation, validation, and application of the RBD program.

Chapter 1 outlines the aim, objectives, scope and limitation of the thesis.

In Chapter 2, the basic terminologies used in wagon and bogie dynamics are reviewed. The mechanics of wheel-rail contact, which is fundamental to the bogie and wagon dynamics, is discussed. The wagon braking and traction systems and their principle of working are reviewed briefly for completeness. In the last part of this chapter, a review of the current railway wagon simulation software systems and their limitations to perform true longitudinal dynamics of wagon simulation is presented.

Chapter 3 describes in detail the formulation of the RBD program. The coordinates of reference and the formulation of multibody system equations are presented in detail. The law of contact between rigid bodies contact and its mathematical formulation applied to the wheel-rail contact patch are described. The calculation of creep forces using the Polach formulation is presented. The technique for solving the system equations that involves the differential equilibrium equations and algebraic constraint equations in the augmented form is exhibited. Finally, the algorithm for the railway bogie dynamic analysis is presented in a flow chart.

Validation of the RBD program against VAMPIRE, where possible, is contained in Chapters 4 and 5. The simulations in Chapter 4 deals with the dynamics of the wheelset within a bogie frame whilst Chapter 5 deals with the dynamics of simplified two axle bogies. A series of simulations with or without the application of braking/traction torque with various track irregularities are presented. Chapter 6 describes the design of an experimental program to validate the novel features of the RBD program for the calculation of the speed profile as a function of the brake torque as well as explicitly determining wheelset angular velocity. The concept of the measurement system and the specification of measurement devices used in the experiments are presented. The modifications of the bogie used in the experiment to suit the mounting of the measurement devices and the construction of the test track are also explained.

Chapter 7 presents the results of the experimental program described in Chapter 6. For convenience, the data obtained from the experiments is categorised into two parts. The first part presents the primary data which is gathered directly from the measurement devices and the second part presents the derived data which is manipulated from the primary data. Three brake cylinder pressure cases have been examined from the experimental data; they are 130 kPa, 150 kPa, and 180 kPa. These cases represent the condition below the skid limit, at the skid limit, and above the skid limit respectively.

The comparison of the experimental results with the results obtained through the simulation using the RBD program is exhibited in Chapter 8. The input for the simulation is the measured experimental brake torque and the output is the longitudinal acceleration / deceleration, speed profile, angular velocity and slip.

Chapter 9 presents the application of the RBD program to simulate the severe bogie dynamics due to application of asymmetric brake normal forces within a single wheelset in bogies equipped with a one-side push brake shoe arrangement. The effect of various levels of asymmetric brake shoe forces and application time is examined and reported in this chapter.

Chapter 10 provides the summary of the thesis and lists the conclusions that have emerged from this research. Some recommendations for further research are also offered in this chapter.