Abstract

This thesis examines the effects of species, rainfall and soil type on tree biomass regressions, as well as the effects of stand dominance and structure on stand biomass regressions in north-east Australian woodlands. This was achieved by examining tree characteristics and biomass relationships for a series of woodland monitoring sites throughout the study area. This study utilised a modified data set from this permanent monitoring site network to provide structural attributes for trees and communities of varying composition in the grazed woodlands. These data were supplemented with environmental data and tree harvest data sets.

Initially, the research reported in this thesis developed allometric and stand biomass regressions for *Callitris glaucophylla* communities. This research also demonstrated that changes in tree-form were not reflected in changes in the environment, nor did such changes reflect changes in tree biomass regressions for three eucalypt species. As a result, a common regression provides a robust estimate of total aboveground biomass of eucalypt trees in the study area. Thus expensive destructive harvesting can generally be avoided for minor eucalypt species. Finally, this study demonstrated a successful methodology that described the stand structure of all the grazed woodland sites based on tree heights. This methodology was developed to allow the expansion of a single stand regression to estimate stand biomass across the entire north-east Australian woodlands.

The findings demonstrated in this study, combined with the long-term data from the permanent monitoring network sites, should enhance the estimation of carbon flux within eucalypt communities of north-east Australia's grazed woodlands.

Application of tree and stand allometrics to the determination of biomass and its flux in some north-east Australian woodlands.

Tree and stand allometrics

by

Madonna Bridget Hoffmann

B. App. Sc. (Biology).

A thesis submitted for the degree of Masters by Research to Faculty of

Arts, Health and Science

Central Queensland University, Rockhampton

Submitted: March, 2006.

Table of contents

ABST	RACT	I
TABL	E OF CONTENTS	.III
LIST (OF TABLES	V
LIST (OF FIGURES	VII
ACKN	OWLEDGMENTS	. XI
DECL	ARATION OF ORIGINALITY	XII
PUBL	ICATIONS	XIII
DEFIN	NITION OF TERMS	XIV
CHAP	TER 1. INTRODUCTION	15
CHAP	TER 2. REVIEW OF LITERATURE	18
2.1	North-east Australian Woodlands	18
2.2	White cypress pine communities	22
2.3	Woodlands as a carbon source and sink	26
2.4	Methods of Estimating Biomass in Tree Stands	28
2.4.1	Volume equations	28
2.4.2	2 Stand tables and mean tree relationships	29
2.4.3	3 Allometric Relationships	30
2.4.4	Allometric models and variables	31
2.4.5	Back transformation correction factors	34
2.4.6	5 Estimating biomass for Allometric regressions	35
2.4.7	Variability	38
2.5	Using a common regression to estimate tree biomass	39
2.6	Scaling Up (Stand Biomass)	45
2.7	Old growth forest biomass	48
2.8	Forest Structure	50
2.9	Size Class Distribution Curves	52
2.10	Changes in Size Class Distributions	54
2.11	Application of size class distributions to determine stand structure	
change	5	
	Summary	
	TER 5. ADOVE-GROUND STANDING DIOMASS IN C.	60
31	Introduction	 60
3.1	Materials and Methods	
321	Location of sites	61
32.1	C glauconhylla harvesting	63
323	3 Treatment of the data	
3.3	Results	67
3.3 1	Site Characteristics.	67
3.3.2	2 Individual tree relationships	69
3.3.3	3 Total Harvest Biomass	75
3.3.4	Site biomass	76
3.4	Discussion	80

3.4.1	Site Characteristics	80
3.4.2	Individual Tree Relationships	
3.4.3	Harvest Site Biomass	83
3.4.4	Stand Biomass	
3.4.5	Expansion Factors	
3.5 0	Conclusion	86
CHAPT	ER 4. TREE-FORM AND ALLOMETRIC REGRESSIONS FO	OR
ESTIMA	ATING BIOMASS IN NORTHEAST AUSTRALIAN WOODLA	ANDS.88
4.1 I	ntroduction	
4.2 S	tudy 1: Tree-form regression and the effect of soil and rainfall.	
4.2.1	Material and Methods	
4.2.2	Results	
4.2.3	Discussion	
4.3 S	Study 2: The relationship between tree-form and biomass allom	etric
regressi	ons	
4.3.1	Material and Methods	
4.3.2	Analysis of tree form and biomass regressions	
4.3.3	Results	
4.3.4	Discussion	123
4.4 C		128
CHAPT	ER 5. STAND ALLOMETRICS FOR ESTIMATING ABOVE- ID RIOMASS IN NORTH EASTERN AUSTRALIAN WOODL	
1-KIJI 1	N I I ISTI INVITANS TAN TATA INFERIA INTERIA NA TIN'NA TATAN'NA TATAN'NA TATAN'NA TATAN'NA TATAN'NA TATAN'NA T	
UNUUI	D DIOMASS IN NORTH-EASTERN AUSTRALIAN WOODL	LANDS. 120
5 1 I	ntraduction	LANDS.
5.1 I	ntroduction	130
5.1 I 5.2 S	ntroduction	
5.1 I 5.2 S dominar	ntroduction	24NDS.
5.1 I 5.2 S dominan 5.2.1 5.2.2	ntroduction	130 130 tand 131 131
5.1 I 5.2 S dominan 5.2.1 5.2.2 5.2.2 5.2.3	ntroduction	LANDS. 130 130 tand 131 133 139
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S	ntroduction	130 130 tand 131 133 139 d
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur	ntroduction	130 130 130 130 131 131 133 139 140
5.1 In 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1	ntroduction	130 130 tand 131 131 133 139 d 140
5.1 If 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2	ntroduction	130 130 130 131 133 133 139 140 140 140
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3	ntroduction	LANDS. 130 130 130 131 133 133 139 140 140 143 146
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S	ntroduction	130 130 130 130 131 133 133 139 140 140 143 146 ure and
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity	ntroduction	130 130 130 131 133 133 139 140 140 140 146 ure and 150
5.1 If 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1	ntroduction	LANDS. 130 tand 131 131 133 139 d 140 140 143 145 ure and 150
5.1 I 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1 5.4.2	ntroduction	130 130 130 130 131 133 133 133 133 133 133 133 133 134 140 143 146 ure and 150 150
5.1 F 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1 5.4.2 5.4.3	ntroduction	130 130 130 130 130 131 133 133 139 d 140 143 146 ure and 150 150 153
5.1 I 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1 5.4.2 5.4.3 5.5 C	ntroduction	LANDS.
5.1 I 5.2 S dominan 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1 5.4.2 5.4.3 5.5 C CHAPT	ntroduction	130 130 130 130 130 131 131 133 133 133 133 133 133 133 133 133 133 139 d 140 143 146 ure and 150 150 153 154 156
5.1 If 5.2 S dominar 5.2.1 5.2.2 5.2.3 5.3 S structur 5.3.1 5.3.2 5.3.3 5.4 S validity 5.4.1 5.4.2 5.4.3 5.5 C CHAPT CHAPT	ntroduction	130 130 130 130 130 130 130 131 133 133 133 133 133 133 133 133 139 d 140 143 140 143 140 143 140 150 150 150 153 154 156 160

- Table 3-1 Density and basal area of censused sites. Sites C01-C25 had an area of 0.25ha ($50m \times 50m$), and sites C26-C30 had an area of 0.2ha ($5 \times 100 \text{ m} \times 4 \text{ m}$). 68
- Table 3-2 Biomass relationships for *C. glaucophylla* trees with different independent variables. Equations are in the form y = a + bx. (y = dependent variable, x = independent variable, n = number of samples for regression, a = intercept, b = regression coefficient, R² = Coefficient of Determination, RSD = Residual Standard Deviation, SSDx = Sum of squares of deviations of x). 74
- Table 3-3 Distribution of above ground biomass components in a *C. glaucophylla*community north of Mitchell, Queensland. Data for harvest sites (50 m × 50 m) given. Plot characteristics presented in Table 3-1.**76**
- Table 3-4 *C. glaucophylla* Site Biomass and Site Basal Area for 30 sites. (25 sites from Mitchell study area and 5 from TRAPS data set). Biomass determined from allometrics developed from Mitchell area (Table 3-1). Note: Basal area differences from Table 3-1, large trees have been constrained to 135 mm circumference at 30 cm (the largest circumference of trees utilised in establishing the allometrics).
 78
- Table 4-1. Locations, dominant overstorey vegetation, mean annual rainfall class (mm/yr) and soil group for the sites selected to investigate tree-form. **91**
- Table 4-2 Lognormal regressions for tree-form at selected sites in Queensland woodlands. Regressions are in the form of $\ln y = a + b \ln x$, where y = tree height (m), x = stem circumference (cm) measured 30 cm above ground level. 94
- Table 4-3. Harvest site details and stand types for nine data sets used to develop
biomass regressions.113
- Table 4-4. Lognormal regressions of circumference (cm) at 30cm from ground level and tree height (m) (tree-form) at nine sites in Queensland's woodlands. Regressions are in the form y = ax + b, where y = ln tree height (m), x = lncircumference (cm), n = sample number, $R^2 =$ coefficient of determination. 115
- Table 4-5. Lognormal regressions of circumference (cm) and biomass (kg) at nine sites in Queensland's woodlands. Regressions are in the form y = a + bx, where $y = \ln dry$ weight (kg), $x = \ln circumference$ (cm), n = sample number. $R^2 = coefficient of determination$. The residual standard deviation (RSD) and sum of squares of the deviations in x (SSDx) values are utilised in applying the antilogarithm correction factor (Baskerville, 1972) for estimating community biomass by using these regressions (Chapter 2 and 3). **117**

Table 4-6. Analysis of covariance of tree-from and biomass regressions for Eucalyptus spp. at the nine harvest sites (significance levels of 0.001).	120
Table 4-7 Common lognormal regressions of circumference (cm) and biomassfor <i>Eucalyptus</i> spp. communities in Queensland's woodlands.	s (kg) 121
Table 4-8. Lognormal regressions of actual biomass (kg) and predicted biomass for groupings of <i>Eucalyptus</i> spp communities. Regressions are in the form $a + bx$, where $y = ln$ predicted biomass (kg), $x = actual biomass$ (kg), $n = sample$ number. $R^2 = coefficient$ of determination.	ss (kg) n y = 122
Table 5-1. Description of three groupings of dominance.	132
Table 5-2. Summary of basal areas and biomass for 95 sites in north-east Aust woodlands. Bracketed values are ranges for data.	ralian 134
Table 5-3. Distribution of 95 sites (number in each class) in three groupings of dominance.	f 136
Table 5-4. Lognormal regressions for stand regressions at 95 sites in Queensla woodlands. Regressions are in the form of $\ln y = a + b \ln x$, where $y = euca biomass$ (t/ha), $x = eucalypt$ basal area (m ² /ha).	nd alypt 137
Table 5-5. Tallest Tree Grade (TTG) for 95 sites, where n, m, o, and p are frequencies in each height class. Presented in decreasing height classes w is highest and p is lowest.	here n 142
Table 5-6. Descriptions of tree categories based on tree growth stages.	142
Table 5-7. Tree category values for Ranks and Groupings. (C1, C2, C3, C4 arrepresent tree categories described in 5.3.1.4)	nd C5 143
Table 5-8. Height data summaries of individual trees of 95 sites.	144
Table 5-9. Nine height classes determined for permanent monitoring sites. Maximum height at the sites influences the description of individuals at differing sites.	145
Table 5-10. Height class values for tree categories determined by Tallest Tree Grade.	146
Table 5-11. Ranking and Groupings of 95 sites in north-east Australia.	146
Table 5-12. Lognormal regressions for stand basal area (m ² /ha) and stand bion (t/ha) at 95 sites in north-east Australian woodlands.	nass 151

vi

Figure 1-1. Map of study area enclosing the grazed woodlands of north-east Australia.	15
Figure 2-1 <i>C. glaucophylla</i> thickening in open woodland area. Kogan, Queen a (1936), b (1989) (Photos provided by QDPI&F, Forest Service).	sland. 25
Figure 3-1. Distribution map of <i>Callitris glaucophylla</i> sites throughout Queen Shaded area represents the Hillside study area and crosses represent TRA monitoring sites from QPDI&F's permanent monitoring network.	sland. PS 62
Figure 3-2 Equipment used to harvest trees and measure light and medium siz biomass components – example is from a eucalypt woodland stand.	ie 65
Figure 3-3 Relationship between trunk circumference (cm) measured at 30 cm aboveground and the total aboveground biomass (kg) of <i>C. glaucophylla</i> .	¹ 69
Figure 3-4 Plot of residuals for Figure 3-3 Relationship between trunk circumference (cm) measured at 30 cm aboveground and the total aboveg biomass (kg) of C. <i>glaucophylla</i> . of relationship between trunk circumfer (cm) measured at 30 cm above-ground and the total aboveground biomass	round ence s (kg) 70
Figure 3-5 Relationship between trunk circumference (cm) measured at 30 cr above ground level and total aboveground biomass (kg) for <i>C. glaucophy</i> after logarithmic transformation.	n <i>lla</i> 70
Figure 3-6 Plot of residuals for Figure 3-5 of relationship between trunk circumference (cm) measured at 30 cm aboveground and the total aboveg biomass (kg).	ground 71
Figure 3-7 Relationship between trunk circumference (cm) measured at 130 c above ground level (breast height) and total aboveground biomass (kg) fo <i>glaucophylla</i> after logarithmic transformation.	m •r <i>C</i> . 72
Figure 3-8 Aboveground biomass of <i>C. glaucophylla</i> : Relationship between h (m) and total aboveground biomass (kg) of <i>C. glaucophylla</i> after logarithe transformation.	neight mic 72
Figure 3-9 Relationship between canopy area (m ²) and total aboveground bior (kg) after logarithmic transformation.	nass 73
Figure 3-10 Relationship between total aboveground standing biomass (t/ha) a stand basal area (m ² /ha) for 30 <i>C. glaucophylla</i> communities in north-ease Australia.	and t 79

Figure 3-11 glauco	1 Stand basal area of aboveground biomass relationships for <i>C</i> . <i>ophylla</i> for stands where the species are dominant, co-dominant or su	ub-
domin	ant (see text for description of these structural classes).	79
Figure 4-1.	Distribution map of sites throughout north-east Australia.	89
Figure 4-2. above	Lognormal regressions of stem circumference (cm) measured 30 cm ground level and tree height (m) for pooled data of <i>Callitris</i>	m
glauco	ophylla, Eucalyptus populnea and E. melanophloia.	95
Figure 4-3. above glauco regress	Lognormal regressions of stem circumference (cm) measured 30 cm ground level and tree height (m) for individual sites dominated by (<i>ophylla</i> , (b) <i>E. populnea</i> , and (c) <i>E. melanophloia</i> . (Independent sions were significantly different, P<0.001). Regression details in	m a) <i>C</i> . 96
Figure 4-4. above glauco	Lognormal regressions of stem circumference (cm) measured 30 cm ground level and tree height (m) for each soil group in (a) <i>C</i> . <i>ophylla</i> , (b) <i>E. populnea</i> , and (c) <i>E. melanophloia</i> communities.	m

Figure 4-5. Lognormal regressions of stem circumference (cm) measured 30 cm above ground level and tree height (m) for individual sites with gradational soil type, for each of the woodland communities dominated by (a) *E. populnea*, and (b) *E. melanophloia*. (Independent regressions were significantly different, P<0.001)
99

98

(Independent regressions were not significantly different, P>0.001).

- Figure 4-6. Lognormal regressions of stem circumference (cm) measured 30 cm above ground level and tree height (m) for individual sites with uniform soil type, for each of the woodland communities dominated by E. *populnea*. (Independent regressions were not significantly different, P>0.001).
 100
- Figure 4-7. Lognormal regressions of stem circumference (cm) measured 30 cm above ground level and tree height (m) for individual sites with duplex soil type, for each of the woodland communities dominated by (a) *C. glaucophylla*, (b) *E. populnea*, and (c) *E. melanophloia* communities. (Independent regressions in figures (a) and (c) were significantly different, P<0.001, and in figure (b) independent regressions were parallel, ie, slopes were not significantly different, P>0.001, and intercepts were significantly different, P<0.001).
- Figure 4-8. Lognormal regressions of stem circumference (cm) measured 30 cm above ground level and tree height (m) for mean annual rainfall increments in (a) *C. glaucophylla*, (b) *E. populnea*, and (c) *E. melanophloia* communities. (Independent regressions in figure (a) and (b) were significantly different, P<0.001, and figure (c) were not significantly different, P >0.001).
- Figure 4-9. Lognormal regressions of stem circumference (cm) measured 30 cm above ground level and tree height (m) for (a) 550-600mm/yr and (b) 600-650mm/yr mean annual rainfall increments in *C. glaucophylla* communities. (Independent regressions in figure (a) were parallel, ie, slopes were not

significantly different, P>0.001 and intercepts were significantly different, P<0.001 and in figure (b) independent regressions were significantly different, P<0.001). **104**

- Figure 4-10. Lognormal regression of stem circumference (cm) measured 30 cm above ground level and tree height (m) for individual sites with mean annual rainfall increments of low, mid-range and high rainfall classes (400-450 mm/yr, 700-750 mm/yr and 1100-1150 mm/yr) in *E. populnea* communities. (Independent regressions were not significantly different, P>0.001). 105
- Figure 4-11. Lognormal regression of stem circumference (cm) measured 30 cm above ground level and tree height (m) for individual sites with mean annual rainfall increments of low, mid-range and high rainfall classes (450-500 mm/yr, 700-750 mm/yr and 800-850 mm/yr) in *E. melanophloia* communities. (Independent regressions were significantly different, P<0.001). 105
- Figure 4-12. Lognormal regression of stem circumference (cm) at 30 cm from ground level and tree height (m) for nine sites representing (a) mature *E. populnea*, (b) mature *E. melanophloia*, (c) adjacent regrowth and mature *E. populnea*, (d) adjacent regrowth and mature *E. melanophloia*, (e) all mature *Eucalyptus* spp. and (f) all regrowth *Eucalyptus* spp. communities. (Independent regressions in figures (a), (b) and (e) were not significantly different, P>0.001, independent regressions in figures (d) and (f) were not significantly different in slope, P>0.001, but were significantly different intercepts, P<0.001, and independent regressions in figure (c) were significantly different, P<0.001). Independent regression descriptions are in Table 4-4. 116
- Figure 4-13. Lognormal regression of stem circumference (cm) measured 30 cm above ground level and biomass (kg) for harvest sites representing (a) mature *E. populnea*, (b) mature *E. melanophloia*, (c) adjacent regrowth and mature *E. populnea*, (d) adjacent regrowth and mature *E. melanophloia*, (e) all mature *Eucalyptus* spp. and (f) all regrowth *Eucalyptus* spp. communities. (Independent regressions in figures (a), (b) and (f) were not significantly different, P>0.001, independent regressions in figures (c) were not significantly different in slope, P>0.001, but were significantly different intercepts, P<0.001, and independent regressions in figure (d) and (e) were significantly different, P<0.001).
- Figure 4-14. Lognormal regression of stem circumference (cm) measured at 30 cm from ground level and biomass (kg) for pooled sites representing mature and regrowth *Eucalyptus* spp. communities. (Independent regressions were not significantly different, P>0.001). 119
- Figure 4-15. Lognormal regression of actual biomass (kg) and predicted biomass (kg) for mature *Eucalyptus* spp. communities 122
- Figure 4-16. Lognormal regression of stem circumference (cm) measured 30 cm above ground level and biomass (kg) for pooled harvest sites representing *Eucalyptus* spp. communities. 123

Figure 5-1. Distribution map of 95 sites throughout north-east Australia. 132 Figure 5-2. Lognormal regression of eucalypt basal area (m^2/ha) and eucalypt biomass (t/ha) for 95 sites in north-east Australia. 137 Figure 5-3. Lognormal regressions of eucalypt basal area (m^2/ha) and eucalypt biomass (t/ha) for sites at dominance levels (a) 70%, (b) 65% and (c) 60%. (Independent regressions were not significantly different, P>0.001). 138 Figure 5-4. Lognormal regressions of eucalypt basal area (m^2/ha) and eucalypt biomass (t/ha) for sites grouped by rankings. (Independent regressions were not significantly different, P>0.001). 152 Figure 5-5. Lognormal regressions of eucalypt basal area (m²/ha) and eucalypt biomass (t/ha) for sites grouped by Site Grouping. (Independent regressions were not significantly different, P>0.001). 152

Figure 5-6. Lognormal regression of actual biomass (t/ha) and predicted biomass (t/ha) for *Eucalyptus* spp. communities. **153**

Acknowledgments

I wish to acknowledge, with thanks, the contributions made by many individuals and groups throughout these studies. In particular, I would like to thank the following:

My supervisors, Dr W.H. Burrows and Prof. K Walsh for their interest and guidance during the completion of this study.

Dr D. M. Orr for his invaluable assistance and advice during the completion of this study.

P.V. Back for his advice and contributions during this study.

DPI&F staff, past and present, responsible for establishing and maintaining the TRAPS sites.

Meat and Livestock Australia and Statewide Landuse And Tree Study who provided funding to establish and maintain the TRAPS sites.

Numerous DPI&F staff, past and present, who provided valuable assistance in field sampling at all of the harvest sites, and the Australian Greenhouse Office and CRC for Greenhouse Accounting for funding the field work.

All the producers who allow monitoring sites to be maintained on their properties and those that gave us permission to harvest trees on their properties.

ARC Spirt Group for providing stand data from the Mitchell study area.

D. Reid for his invaluable advice on the statistical analysis undertaken.

This thesis reports the original work of the author, except as otherwise stated in the acknowledgements and listing of the associated publications. It has not been presented to this or any other university for the award of another degree.

Madonna B. Hoffmann

Publications

Data used during the preparation of this thesis also formed part of the contribution made by the candidate as a co-author in the following publications:

Burrows, W.H., Hoffmann, M.B., Compton, J.F., Back, P.V. and Tait, L.J.
(2000). Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. *Australian Journal of Botany.* 48: 707-714.

Burrows W.H., Hoffmann, M.B. Compton, J.F. and Back, P.V. (2001).
Allometric relationships and community biomass stocks in White Cypress
Pine (*Callitris glaucophylla*) and associated eucalypts of the Carnarvon
area – South central Queensland (with additional data for Scrub
Leopardwood – *Flindersia dissosperma*). National Carbon Accounting
System Technical Report No. 33. Australian Greenhouse Office:
Canberra.

- Williams, R.J., Zerihun, A., Montagu, K.D., Hoffmann, M., Hutley, L.B. and Chen, X. (2005). Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. *Australian Journal of Botany*. **53**: 607-619.
- Zerihun, A., Montagu, K.D., Hoffmann, M.B. and Bray, S. (in press). Changes in root to shoot ratios of *Eucalyptus populnea* communities of north-east Australia across a rainfall gradient. *Ecosystems*.

Definition of terms

MAR - Mean annual rainfall

- QDPI&F- Queensland Department of Primary Industries & Fisheries
- **DBH, D, DBHOB** Diameter breast height (1.3m from ground) over bark
- TRAPS Transect Recording And Processing System. Each monitoring site consists of 5 belted transects (100 m × 4 m) 25 m apart in a relatively uniform community. Data describing location, species, circumference at 30 cm from ground, height, burn ratings and comments on plant health (dead, sick etc.) were recorded for every plant within the transect belt following the TRAPS methodology. These monitoring sites were established on rural landholdings and represent a range of vegetation communities, dominant species and geographical locations. Full description sites and methodology in Back *et al.* (1997).