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Abstract 

This thesis examines the effects of species, rainfall and soil type on tree biomass 

regressions, as well as the effects of stand dominance and structure on stand biomass 

regressions in north-east Australian woodlands.  This was achieved by examining tree 

characteristics and biomass relationships for a series of woodland monitoring sites 

throughout the study area.  This study utilised a modified data set from this permanent 

monitoring site network to provide structural attributes for trees and communities of 

varying composition in the grazed woodlands.  These data were supplemented with 

environmental data and tree harvest data sets.   

Initially, the research reported in this thesis developed allometric and stand biomass 

regressions for Callitris glaucophylla communities.  This research also demonstrated 

that changes in tree-form were not reflected in changes in the environment, nor did 

such changes reflect changes in tree biomass regressions for three eucalypt species.  

As a result, a common regression provides a robust estimate of total aboveground 

biomass of eucalypt trees in the study area.  Thus expensive destructive harvesting 

can generally be avoided for minor eucalypt species.  Finally, this study demonstrated 

a successful methodology that described the stand structure of all the grazed 

woodland sites based on tree heights.  This methodology was developed to allow the 

expansion of a single stand regression to estimate stand biomass across the entire 

north-east Australian woodlands.     

The findings demonstrated in this study, combined with the long-term data from the 

permanent monitoring network sites, should enhance the estimation of carbon flux 

within eucalypt communities of north-east Australia’s grazed woodlands.
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