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Executive Summary 

This thesis examines the application of the techniques of Fourier spectrogram and 

wavelet analysis to a low power embedded microprocessor application in a novel 

railway and rollingstock monitoring system.  

The safe and cost effective operation of freight railways is limited by the dynamic 

performance of wagons running on track.  A monitoring system has been proposed 

comprising of low cost wireless sensing devices, dubbed “Health Cards”, to be installed 

on every wagon in the fleet.  When marshalled into a train, the devices would sense 

accelerations and communicate via radio network to a master system in the locomotive.  

The integrated system would provide online information for decision support systems.   

Data throughput was heavily restricted by the network architecture, so significant signal 

analysis was required at the device level.  An electronics engineering team at Central 

Queensland University developed a prototype Health Card, incorporating a 27MHz 

microcontroller and four dual axis accelerometers.  A sensing arrangement and online 

analysis algorithms were required to detect and categorise dynamic events while 

operating within the constraints of the system.  

Time-frequency analysis reveals the time varying frequency content of signals, making 

it suitable to detect and characterise transient events.  With efficient algorithms such as 

the Fast Fourier Transform, and Fast Wavelet Transform, time-frequency analysis 

methods can be implemented on a low power, embedded microcontroller.  

This thesis examines the application of time-frequency analysis techniques to wagon 

body acceleration signals, for the purpose of detecting poor dynamic performance of the 



iii 

wagon-track system. The Fourier spectrogram is implemented on the Health Card 

prototype and demonstrated in the laboratory.  The research and algorithms provide a 

foundation for ongoing development as resources become available for system testing 

and validation. 
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1 Introduction 
The safe and cost-effective operation of freight railways is limited by the dynamic 

performance of the wagons running on the track.  The dynamic performance is 

determined by the characteristics of the wagon and the irregularities in the track.  

Wagon-track interaction can be monitored to a large degree by measuring the 

accelerations of the wagon body.  Ride monitoring systems are currently available, 

suitable for installation on selected vehicles.  However, the ride performance of every 

individual wagon on every track location cannot be measured viably with the existing 

technology.   

A system has been proposed comprising of low cost wireless sensing devices, dubbed 

“Health Cards”, to be installed on every wagon in the fleet.  When wagons are 

marshalled into a train, the devices would sense accelerations and communicate via 

radio network to a master system in the locomotive.   

A set of four prototype Health Cards has been developed by an engineering team at 

Central Queensland University.  Each prototype Health Card incorporates a 27MHz 

microcontroller with 256kB of onboard RAM, four dual axis accelerometers, a GPS 

receiver, two low power radios, lithium ion batteries with management circuits, and a 

solar panel.  The purpose of the prototype was firstly to prove the capability of the 

equipment, and secondly to enable ongoing research into the capabilities of the 

proposed system.   

Online signal processing and analysis algorithms were required for the prototype to 

operate and give meaningful information.  The current ride monitoring systems detect 

events using peak or average vibration magnitude levels.  Acceleration waveforms are 
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then stored or transmitted for further offline analysis.  However, the proposed system 

has limited data throughput and therefore does not have the capability of storing or 

transmitting waveforms.  Significant signal analysis must be performed onboard the 

device to extract features from the signal that can be used to classify events.   

Time-frequency analysis is a signal processing technique which reveals the frequency 

content of transient signals.  It has been applied in various signal analysis and detection 

applications. With efficient algorithms, such as the fast Fourier transform and fast 

wavelet transform, time-frequency analysis methods should be suitable for a low power, 

embedded microcontroller.  

This research investigates whether time frequency analysis can be implemented within 

the constraints of the prototype device, and how effective the technique is for detection 

of poor vehicle dynamic performance and severe vehicle track interaction.  In particular, 

two forms of time frequency analysis are investigated.  These are the short term Fourier 

transform, and the wavelet transform. 

Firstly, an understanding is developed in the areas of: the structure and dynamics of rail 

vehicles on track; the phenomena that are desirable to detect; existing rail industry 

practices in vehicle ride monitoring.  Secondly, the prototype Health Card and 

associated constraints is presented.  Thirdly, Fourier time-frequency analysis and 

wavelet analysis is introduced.  Fourthly, wavelet analysis and Fourier time-frequency 

analysis is compared with standard root mean square (RMS) and peak to peak measures 

using field data.  Finally, an algorithm for the prototype Health Card, based upon the 

Fourier time-frequency method is implemented on the prototype and demonstrated in 

the laboratory. 



3 

Through carrying out this research, significant contributions have been made towards 

the development of the Health Card system.  These contributions include: 

1. specification of sensor locations and signal pre-processing for a field data 

acquisition 

2. strategic placement of four dual axis accelerometers in order for Health Card to 

capture the modes of dynamic motion in the vehicle body 

3. determination of requirements for signal filtering and data sampling within the 

prototype device 

4. specification of signal processing methods for the device including 

a. online handling of data from the four dual axis accelerometers 

b. online conversion of raw data into measurement of five modes of vehicle 

body motion including vertical, lateral, pitch, yaw and roll. 

c. a time frequency analysis algorithm reporting energy levels in each mode 

while providing a means for frequency selective detection.  

This thesis examines the application and implementation of time-frequency analysis 

techniques on the Health Card prototype, for the purpose of detecting poor dynamic 

performance of the wagon-track system. The research and algorithms provide a 

foundation for ongoing development towards a fully automated intelligent system.  
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2 Application Background 
The purpose of the Health Card system is to monitor the dynamic performance of the  

railway system by placing an acceleration sensing device on every wagon.  Algorithms 

for Health Card, like any signal analysis, cannot be developed without a good 

understanding of the application.   

This chapter firstly introduces the basic structure and nomenclature of the wagon and 

track.  Secondly, it identifies the dynamic principles that limit the performance of a 

wagon running on track.  Finally, existing systems and standards are identified and 

compared with the proposed Health Card system.   

2.1 RAILWAY WAGON-TRACK SYSTEM 

This section introduces the physical structure of conventional freight wagons and track 

which will be referred to throughout the body of the thesis.  Rollingstock and track 

design are substantial fields of engineering, and a coverage of these fields will not be 

attempted here.  Although there are many variations, the majority of railways in 

Australia and worldwide use the basic elements of track and freight wagon structure 

which is shown in this section.   For readers who are familiar with railway systems and 

terminology, this section is not needed.  However, for those new to railway concepts, it 

is necessary to establish some basic terminology.  
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2.1.1 Conventional Track Structure 

Railway track is designed to interface with railway vehicles to support the load while 

providing a permanent way of travel.  A thorough coverage of railway track design and 

maintenance is given by [1][2].  Figure 2-1 pictures the basic elements of conventional 

track structure including the formation, capping layer, ballast, sleepers, fasteners and 

rails.   The formation is the prepared support base for the structure.  The capping layer is 

designed to cause water to shed to the sides of the track instead of seeping into the 

formation.  Ballast is coarsely crushed rock which distributes the track load evenly from 

the sleepers to the formation, while providing ample drainage.  The sleepers support the 

rails and providing lateral position and strength.  The rails are rolled steel sections 

designed to interface with the wheel with minimal wear rolling resistance.  The rails are 

fixed with fastenings to the sleepers. These elements combine to support the loads of a 

passing train, while maintaining the designed geometry of the track.    Bridges, level 

crossings, tunnels etc,  may be supported with structures differing from the track 

structure shown.   
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Figure 2-1 Conventional Track Structure 

Geometric parameters that describe the track are shown in Figure 2-2 and the terms are 

defined in Table 2-1.   Tangent, spiral and curved track are terms that describe the 

layout of the track.   The geometry of the track is normally defined in terms of gauge, 

alignment, level, cant, and twist.      

 Sleeper  
Ballast  
  

Capping layer 
Subgrade  
or Formation 

Rail 
Fastening 

Lateral Section 

Longitudinal  Section 
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Figure 2-2 Diagram of Track Parameters 

Table 2-1  Description of Track Parameters  

Term Definition 
Gauge Distance between the wheel rail contact points on 

the two rails. 

Alignment, or Line Deviation from the designed track centreline in the 
direction lateral to the designed plane of the track. 

Level, Top, or Elevation Deviation from the designed track centreline in the 
direction perpendicular to the designed plane of 
the track. 

Cant, Cross-level, or 
Superelevation 

Difference in vertical height between one rail and 
the other rail, describing the angle of the track 
plane to the horizontal plane. 

Twist The change in cant with respect to distance.  Often 
defined over a nominated distance. 

Spiral, or Transition The section of curved track that has a changing 
radius from one curve radius to another.   

Tangent (track) Straight track,  i.e. not curved. 

Curve A section of track that is not straight, normally 
defined by a curve radius. 

Gauge 

Cant  

Level

Alignment  

Curve Radius  

Curve  

Transition (Spiral) 
Tangent Track  
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2.1.2 Conventional Freight Wagon Structure 

The railway wagon is designed to guide the load along the track safely with minimal 

damage to the track and the load.  The most common wagon design has a bogie at each 

end as does the example shown in Figure 2-3.  The bogie is a steerable unit which 

distributes the vehicle load between four wheels.  The ride quality is improved by spring 

and damper elements within the bogie. 

 
Figure 2-3 A Conventional Wagon Design 

The “three-piece bogie” is the most common design used for Australian freight wagons.  

An example of a three piece bogie is shown in Figure 2-4.  The three pieces refer to 

major structural components.  These are the wheelsets, sideframes and bolster.  There 

are two wheelsets, two sideframes and one bolster.  The wheelsets consist of two steel 

wheels pressed onto a fixed axle with bearings at each end.  The bearings are contained 

in bearing cases which fit into journals in the sideframes.  The sideframes align the two 

wheelset axles and transfer the load between the bolster and the wheelsets.  Suspension 

comprises of a nest of springs between each sideframe and its bolster end, with damping 

provided by a pair of friction pads between the sides of the bolster and the sideframes. 

BodyBogie Bogie
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Figure 2-4 A Conventional Three Piece Bogie 

Each wheel has a conical profile tapering from a larger radius on the inside edge to a 

smaller radius on the outside.  The wheel rail interface profile is designed to minimise 

rolling resistance and provide the steering mechanism which will be described in 

Section 2.2.1. The inside edge of each wheel has a flange designed to provide additional 

guidance to the wheelset when the wheel conicity is inadequate.  Excessive flange 

contact increases rail wear and risk of derailment.    

Axle  

Axle Box  
(bearing case)  Sideframe 

Spring 
Nest  

Friction  
Dampers 

Bolster  

Side Bearer  

Centre 
Bowl  

Wheel 
Flange  

Wheel  

Wheelset 
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Figure 2-5 Wheel-rail profile 

Figure 2-6  shows a graphical representation of a hopper wagon modelled in the 

simulation package Vampire™.  A conventional railway wagon has 11 major masses 

including body(1), bolsters (2), sideframes (4) and wheelsets (4).  Some example 

masses are listed in Table 2-2.   (Note that Vampire™ uses units of mega-grams (Mg) to 

represent metric tonnes) 

Table 2-2 Example Masses 

Component Mass  (Mg) 

Body (loaded) 66 

Body (unloaded) 8 

Bogie side frame  0.5 

Bogie bolster  0.5 

Wheelset   1.1 

Total Each Bogie 3.7 

Total  Wagon (loaded) 73.4 

                       (unloaded) 15.4 

 

contact 
patch  

rail  
wheel 
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Figure 2-6 Simulation Model of a Hopper Wagon 

Bogie 
Detail 

Wagon 
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2.2  DYNAMIC PERFORMANCE OF THE WAGON-TRACK SYSTEM 

The safe and cost effective operation of freight railways is limited by the dynamic 

performance of wagons running on track.  [3] identifies that the performance of rail 

vehicles running on tangent track is limited by two main problem areas.  These are: the 

lateral instability inherent to the design of the steering of a railway wagon; and the 

response of the railway wagon to individual or combined track irregularities.  These 

problem areas will be addressed, in that order, in the following sections.  Particular 

attention will be given to how these can be detected from the accelerations of the wagon 

body. 

2.2.1 Lateral Instability of the Railway Wagon  

Railway wagons exhibit a self-excited lateral instability when running on tangent track.  

This instability is commonly known as hunting.  Although it can be initiated by 

irregularities in the track, it is mainly attributable to the characteristics of the wagon.  

The mechanism that drives the instability is the same mechanism that steers the bogie 

smoothly through curves. 

2.2.1.1 Steering Mechanism 

The railway wagon is designed to negotiate gradual curves without contacting the wheel 

flanges.  This negotiation is achieved by an intriguing steering mechanism produced by 

conical wheels on a fixed axle.  Figure 2-7 illustrates the steering mechanism. 

When a conical wheelset is given a lateral offset from the centreline of the track, the 

effective diameter at the wheel rail contact point is larger for the outermost wheel and 

smaller for the innermost wheel.  However, the rotational speed of the two wheels is 

maintained equal by the fixed axle.  Thus an unequal forward motion occurs which 
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rotates the wheelset towards the centre of the track, resulting in a lateral displacement 

opposing the initial offset.   

 
Figure 2-7 Wheelset Steering Mechanism 

The steering mechanism acts to keep the wheelset in a central position on the track, 

guiding the wheelset effortlessly around curves with minimal wear.  However, without 

some form of resistance, the wheelset will oscillate indefinitely.  This oscillatory 

movement was first described mathematically by Klingel in 1883, and a derivation is 

given in [1].    

2.2.1.2 Lateral Instability 

The natural oscillation of the wheelset due to the steering mechanism is normally 

constrained by the rotational friction of the bogie and the inertia of the vehicle.  

However at critical running speeds the steering mechanism will resonate with the lateral 

properties of the vehicle to produce an underdamped oscillation commonly referred to 

as hunting.   

Lateral instability, or hunting, is a key dynamic limitation of a rail vehicle, and the main 

speed-limiting factor on tangent track.  Negative impacts of hunting include: increased 

wear of track, rail, wheel and bogie components; poor freight handling; and increased 

risk of derailment.  Key factors that can influence lateral instability include: running 
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speed; loading state; bogie rotational resistance; wheel-rail contact profile; and friction 

of the wheel rail interface. 

Gross mass has a large effect on hunting such that loaded vehicles are less likely to hunt 

than empty vehicles.  This was verified in the analysis of field data, Section 5.5.1, which 

showed large increase in lateral oscillation when the wagon was empty compared to 

when it was full. 

Hunting is the primary speed limiting factor for wagons running on tangent track.  The 

speed at which hunting will occur for a particular wagon is difficult to determine.  

Simulation studies reported in [4] have shown that the existence of a single critical 

speed is questionable, even for a deterministic wagon model.   Other studies, in [5], 

show that lateral oscillation is bifurcated, occurring at different speeds depending on the 

initial conditions.  [3] reports that there are two major modes of lateral oscillation.   One 

occurs at lower speeds and involves the resonant modes of the wagon body.  The other 

occurs at higher speeds and appears as violent oscillation of the bogie components.  

Generally, the lowest speed at which severe hunting occurs must be taken as the speed 

limiting factor.   

Increasing the rotational resistance of the bogie is an obvious control measure.  

However, this reduces the curving performance of the vehicle.  Rotational stiffness and 

friction cause inadequate turning of the bogie when entering a curve, and a residual 

rotation of the bogie when exiting the curve.  The bogie tends to warp to negotiate the 

curve, and the poor geometry through the curve dramatically increases wheel-rail wear 

and wheel squeal.  Consequently, a significant trade-off exists between lateral stability 

of the wagon on tangent track, and the steering  performance of the wagon when 
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negotiating curves.  (This problem is not unique to railway vehicles.  Riders of surf 

boards, skate boards, motorbikes, or the like will attest to the instability of a highly 

manoeuvrable vehicle on a straight at high speed.)  In practice, rotational friction of the 

bogie will vary depending on the wear condition and lubrication of the centre bowl and 

side bearers. 

Wheel-rail contact profile and friction are factors that can influence bogie hunting.  As 

the wheels and rails wear, the contact profile changes so that the effective conicity 

becomes irregular across the profile.  The friction of the contact point can also change 

with weather conditions and application of lubricants.   

The occurrence of lateral bogie oscillation is difficult to predict, and depends of several 

variable factors.  The complete elimination of hunting is highly improbable due to the 

need to maintain curving performance.  However, hunting must be managed in order to 

maximise safety and minimise maintenance of rollingstock and track infrastructure.   

Hunting is currently managed by ride testing new and modified rollingstock types 

before they enter service. Once a vehicle type has been accepted, there is no means of 

monitoring the hunting performance of individual wagons.  An intended capability of 

Health Card is to detect hunting of freight wagons during normal operation.    

2.2.1.3 Detection of Bogie Hunting from the Wagon Body 

For Health Card to reliably detect lateral instability of the bogie, it must be able to 

detect the phenomena from the wagon body.  North American standards [6] for high 

speed passenger and freight vehicles specify lateral accelerometers mounted on the 

bogie for detecting bogie hunting.  This is not possible for the Health Card system on 
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freight wagons where sensing is restricted to the wagon body.  However, measurement 

of the bogie is not required under the Australian [8][9][16] vehicle performance 

standards, which require measurement at the floor of the vehicle directly above the 

bogie centres.   

[8] and [9] define unacceptable hunting as “ Sustained lateral sinusoidal acceleration of 

frequency greater than 0.5 Hz, producing average peak accelerations at the bogie 

centre in excess of +/- 0.35g over a period of at least 10 seconds.”  Both standards 

stipulate that accelerometers be placed on the body at floor level as close as possible to 

the bogie centre.   

Simulation studies have shown that lateral oscillations of the front and back bogies 

reflect strongly in the wagon body motion.  Field data collected from an in-service 

instrumented freight wagon [10] has shown that the wagon body responded with either a 

lateral motion when front and back bogies oscillate in phase, or a yaw motion when 

front and back bogies oscillate out of phase, as illustrated in Figure 2-11.   

From the available standards and literature, it is reasonable to expect that unacceptable 

hunting can be reliably detected from the wagon body.  For rollingstock maintenance 

planning, it is desirable to detect levels of lateral oscillation below the acceptable limits. 

This is further investigated in the analysis of field data in Section 5.5.1 

2.2.2 Vehicle Interaction with Track Irregularities 

The purpose of Health Card is to monitor the performance of the vehicle-track system.  

As stated in the introduction to Section 2.2, there are two problem areas that affect the 

dynamic performance of railway wagons running on track.  The first is lateral instability 
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due to the wheelset steering mechanism.  The second problem area is interaction with 

track irregularities. 

2.2.2.1 Track Irregularities 

Railway track is designed to interface with railway vehicles and provide a permanent 

way of travel.  Deviation from the initial design geometry, otherwise known as 

irregularity, increases as the track condition degrades with use.  Irregularity can be 

specified in terms of horizontal alignment, vertical alignment, cross-level and gauge (or 

equivalent terms) as shown in Figure 2-8.  These quantities are recorded periodically by 

track measurement vehicles to ensure that the track is maintained to an agreed standard.   

Irregularity tolerances and recommended maintenance responses are specified in [7] and 

in  Volume 4, Part 3, of [11].  

 
Figure 2-8 Track Irregularity Parameters 

Examples of track irregularities and typical occurrences are described in Figure 2-9 and  

Table 2-3 adapted from [3]. 
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Figure 2-9  Examples of temporal track irregularities 

Table 2-3 Typical Occurrences of Temporal Irregularities 

Irregularity Typical Occurrence 

Cusp Rail joints, turnouts, sun kinks, piers at bridges 

Bump Soft spots, washouts, mud spots, fouled ballast, joints, spirals, 
level crossings, bridges, overpasses, turnouts 

Jog Spirals, bridges, crossings, fill-cut transitions 

Plateau Bridges, grade crossings, areas of spot maintenance 

Trough Soft spots, soft and unstable subgrade, spirals 

Damped sinusoid Spirals, turnouts, localised soft spots 

Sinusoid Soft spots, bridges, periodic rail lengths 

 

Track degradation and maintenance is an ongoing process that can be monitored against 

accumulated number of tonnes of traffic (gross tonnage).  The cycle of track 

degradation and maintenance is illustrated in Figure 2-10 adapted from [1].  Newly laid 

track degrades very quickly during subgrade and ballast settlement.  Once the initial 
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settlement occurs, the rate of degradation becomes linear.  As the irregularity 

magnitudes increase further, the degradation once again starts to accelerate towards 

critical limits.  Track maintenance is normally scheduled during the linear region as 

close as possible to the accelerated region.   However, the degradation slope is increased 

compared to new track and ballast.  [1] demonstrates this process with irregularity data 

trends measured at intervals before and after track maintenance and renewal.     

 
Figure 2-10 Track Degradation and Maintenance Cycle 

Irregularities in the track accelerate due to their interaction with the rolling stock.  The 

irregularities induce dynamic responses in the rolling stock.  These dynamic responses 

will in turn produce track forces which further degrade the track.  This can account for 

the accelerated degradation between the maintenance limit and the operational limit in 

Figure 2-10.  In a study into vehicle track interaction [12], examples were shown where 

short defects can induce resonant modes involving body oscillation, leading to cyclic 

deformation in the track for some distance after the point irregularity.    
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2.2.2.2 Resonant Modes of Wagon Response 

The response of an individual vehicle to track irregularities is not always proportional to 

the magnitude of the irregularities.  A vehicle ride monitoring study [13] identified that 

the measured response of the vehicle to the track is often specific to the suspension 

characteristics of the vehicle carrying the ride monitoring equipment.  Other wagon 

instrumentation studies [10][14][15] have shown that large dynamic events occur when 

the wavelength of a track variation combined with the train speed matches a resonant 

mode and frequency in the wagon.   

Figure 2-11 shows the oscillatory modes of a wagon body and the track irregularity 

formations that excite those modes.  In the figure: L is the distance between the centre 

of the front bogie and the centre of the rear bogie;  n is a positive integer; and phase is 

the relative alignment of the sinusoidal irregularity on each rail. 
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Figure 2-11 Excitation of oscillatory modes in the wagon body 

Large dynamic responses are not limited to sustained sinusoidal irregularities. [3] 

identifies that large responses can also occur from spatial combinations of temporal 

irregularities, such as those described in Figure 2-9.   

The resonant modes of oscillation in a wagon and the frequencies at which they occur 

can be identified with modal analysis of a linear dynamic model.  The vehicle 

simulation package Vampire™ has a modal analysis function which was used on the 

hopper wagon model of Figure 2-6 with the parameters listed in Appendix A.  (The 

model contains non-linear damping elements for dry friction.  These elements are 

removed and replaced with linear damping for the modal analysis).   The resulting 
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resonant frequencies for the body modes are shown in Table 2-4 for the loaded and 

empty case.  

Table 2-4 Oscillation mode frequencies (Hz) 

Mode loaded  
(Hz) 

unloaded  
(Hz) 

Body Roll 1.237 5.426 

Body Bounce 2.415 35.411 

Body Pitch 4.104 30.344 

Body Yaw (bogie lateral anti-phase) 1.237 0.986 

Body Lateral (bogie lateral in-phase) 1.356 0.986 

 
 
An example of the effect of resonance is shown in Figure 2-13.  Vampire™ transient 

analysis was used to simulate the response of a wagon to track irregularities.  A series of 

simulations were done with the same model as the modal analysis (with non-linear 

friction elements).  Vertical track irregularities were designed such that the wavelength 

λ was equal to the distance between the bogies L.  The irregularities were sinusoidal 

with smoothly increasing magnitude envelope to minimise transient effects.  An 

example irregularity is shown in Figure 2-12. 
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Figure 2-12 Example Vertical Track Irregularity 

The running speed and wavelength was varied to produce frequency excitation in steps 

of 0.5Hz.  The excitation frequency ( f ) generated is given by 

λfv =  
eq. 2-1 

For higher frequencies, the wavelength was divided by an integer n to keep running 

speeds below 80km/h.  The RMS vertical accelerations of the body centre was plotted 

against each excitation frequency to produce Figure 2-13. 
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Figure 2-13 RMS vertical body acceleration vs vertical excitation frequency in the 

vertical mode 

The plot shows a resonant peak at 2.5Hz, which corresponds to the modal analysis result 

of 2.415Hz in  Table 2-4.  The 2.5Hz peak was excited with λ = 5.18m and speed = 

46.62km/h.    

Similar conditions exist that will excite resonance in other modes.  Figure 2-14 is a plot 

of the resonant conditions for roll, pitch and vertical bounce with bogie spacing of 

10.36m and an alternative length of 12m for comparison.  This figure highlights the fact 

that wagons with different dimensions and suspension characteristics will resonate with 

different track irregularity formations and at different speeds. 
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Figure 2-14 Resonant conditions of speed and irregularity wavelength for bounce, 

pitch and roll modes 

It is clear that the response of wagons to track irregularities is highly dependent on the 

physical arrangement and suspension characteristics of the wagon and how they interact 

with track irregularities on a case by case basis. 

2.3 MANAGING THE PERFORMANCE OF THE WAGON TRACK SYSTEM 

The previous section establishes that the system of a wagon running on track is limited 

by the lateral stability of the individual wagon, and the combined interaction between 

the individual wagon and specific formations of track irregularity.  These limitations 

must be managed to improve the performance of the rail system. 

2.3.1 Performance Testing of Rollingstock 

Australian vehicle acceptance standards [16][7][9] stipulate that all new or modified 

types of rollingstock are tested dynamically.  Test regimes include passing the vehicle 
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over standard irregularities built into the test track, and monitoring the vehicle ride of 

track sections with a nominated irregularity level classification.  Tests are performed 

with lateral and vertical accelerometers mounted on the vehicle body as close as 

possible to the bogie centre.   Wheel profiles and loading states are designed to ensure 

that the test is performed under the most adverse conditions likely to be experienced in 

service.   

Rail Infrastructure Corporation (NSW) [9] stipulates that previously accepted vehicles 

may require ride performance testing in the following instances:   

1. Proposed modification to the suspension characteristics 

2. Proposed change in bogie rotational resistance 

3. Proposed change in wheel profile 

4. Proposed change in bogie type 

5. Proposed change in vehicle operating conditions 

6. Any proposed vehicle modification which may affect the vehicle ride 

performance 

7. Significant change in the vehicle tare mass 

8. Where, in the Rail Infrastructure Corporation’s opinion, there is suspected poor 

ride performance.      

The first seven points emphasise the factors that have considerable impact on vehicle 

performance.  Most of these factors can vary throughout the service life of the vehicle 
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and remain undetected for a period of time.  Suspension characteristics can change due 

to degraded springs and worn or lubricated friction dampers.  Bogie rotational resistance 

can change with the lubrication and wear condition of the centre bowl and side bearers.  

Wheel profiles change considerably as the wheel wears.  Vehicle operating conditions 

can change with fleet demand.  The eighth point aptly expresses the benefit of 

monitoring ride of every vehicle in service to verify dynamic performance.  

 
2.3.2 Benefits of Monitoring Ride on Every Wagon 

Monitoring the wagon fleet for instances of lateral instability has promising 

implications.  The speed limiting nature of hunting, and the trade-off between lateral 

stability and curving performance creates an opportunity for optimisation which could 

have cost and safety benefits for both rollingstock and railway administrators.  The fact 

that lateral instability is affected by the wear condition of the bogie suggests that its 

detection would be a useful indicator for maintenance planning.   Operational safety 

would also increase with real time indication of hunting wagons, allowing the driver to 

adjust train speed accordingly. 

Monitoring the fleet for instances of severe dynamic interaction would also benefit 

rollingstock and track maintainers.  If a large proportion of the fleet responds poorly to a 

track location, that location could be given higher maintenance priority.  [17] reports a 

similar concept where several cars in a passenger train were monitored simultaneously.  

Conversely, if a particular wagon responds poorly compared to the other wagons, it can 

be given a higher maintenance priority. 
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2.3.3 Existing Ride Monitoring Systems and Standards 

Track maintainers have used vehicle ride measurement to monitor track condition since 

the 1920’s.  The first use of a ride measurement system found in literature was in 1926 

when a Hallade machine was installed on a New South Wales track inspection car.   The 

Hallade recorder was a mechanical system of pendulums linked to pens on a chart 

recorder.  The pendulums were sensitive to roll, lateral, vertical and longitudinal 

accelerations, and the resulting traces were inspected to identify track sections that 

needed maintenance.  An example of a Hallade machine and some sample charts used 

here by permission from [2] is shown in Figure 2-15.  Although Hallade recorders have 

been replaced with electronic equivalents, the machines were still in use in British rail 

in 1979. 

 
Figure 2-15  Hallade machine and recorded traces (source [2]) 

 

LINE 1: location marks (manually input by operator) 
LINE 2: roll (offset indicates train acceleration) 
LINE 3: lateral 
LINE 4: vertical 



29 

Modern systems measure accelerations with accelerometers and log the data digitally 

[18] [19].  The installation for [18] comprises of a sealed box containing a computer, 

satellite navigator, cellular telephone and modem. A single twin axis accelerometer is 

mounted on the wagon in a separate box.  The computer records root mean square 

(RMS) lateral and vertical accelerations. The RMS values are calculated over 200m 

sections of track and reported to a land based desktop machine which displays a 

geographical view of the track network.  Ride roughness is displayed in colour code.  

Figure 2-16 shows an example of the desktop display. 

 
Figure 2-16  RideMon Example Desktop Display (Source [18]) 

[13] presents a similar ride monitoring system operating in North America.  This system 

monitors acceleration levels stipulated in Federal Railroad Association (FRA) safety 

standards [6][21] for vehicle-track interaction.  The system also applies more stringent 

maintenance thresholds for prioritising track maintenance.     

The existing ride measurement systems are intended for installation on selected 

rollingstock to represent the different types of vehicles using the track.  These are not 

intended to monitor the condition of the rollingstock fleet, but rather to monitor the 

condition of the track. 
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Typically these systems use embedded PC technology, and the power ratings for the 

units are in the order of tens of watts, prohibiting their use in permanent self powered 

installations.  Furthermore, the existing systems limit online processing to level 

detection.  If closer analysis of the signal is to be done at all, it is done by logging the 

waveforms that caused the trigger and downloading them to a land-based database for 

offline human analysis. 

2.4 CONCLUSIONS 

This chapter developed an understanding of the structure and dynamics of rail vehicles 

on track.  Some key phenomena that are desirable to detect were identified, and existing 

rail industry practices and standards for vehicle ride testing and monitoring were 

reviewed.  The following key considerations were identified: 

• The dynamic performance of the system of a wagon running on track affects 

safe running speeds of rollingstock and wear rates of track infrastructure and 

rollingstock components.  

• The dynamic performance on tangent track is limited by the lateral instability of 

the wagon due to the steering mechanism; hence a trade-off exists between 

tangent running performance and curving performance.    

• The dynamic performance is also limited by and the interaction of the wagon 

with irregularities in the track, which depends upon the design parameters, wear 

condition, and loading state of the wagon.   

• Ride monitoring systems are available for the purpose of prioritising track 

maintenance based upon the ride performance of sample rollingstock.  However, 
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the existing systems are not viable for installation on every wagon to monitor the 

relative ride performance of the rollingstock. 

The developmental Health Card system aims to monitor every vehicle in the fleet using 

low cost, intelligent devices.  The benefits of this system would be to: 

• Prioritise track maintenance based upon actual responses of the working 

rollingstock fleet. 

• Prioritise rollingstock maintenance based upon relative behaviour of wagons on 

the same track sections. 

• Provide safety benefits by alerting drivers in real time of excessive lateral and 

vertical dynamics of train elements. 

• Provide a research and validation mechanism for studying the lateral and vertical 

dynamics of rollingstock, including the optimisation of the trade-off between 

curving performance and lateral instability on tangent track, and the validation 

of speed limits based upon actual dynamic performance. 

The following chapter describes the developmental Health Card system and initial 

prototype in detail.  Particular attention is given to the signal processing aspects and 

constraints that impact upon the signal analysis task. 
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3 Health Card System 
Online monitoring of body accelerations on every wagon in the fleet is a concept that 

would not have been conceivable without recent developments in sensing and wireless 

communication technology.  This chapter introduces the proposed Health Card system 

which aims to monitor every wagon in the fleet using low cost, intelligent devices.   The 

first prototype Health Card was developed by a team of engineers at Central Queensland 

University during the course of this research.  Online signal analysis algorithms were 

required for the device to operate.  This chapter will focus upon the signal processing 

and analysis aspects of the prototype system. 

3.1 THE PROPOSED SYSTEM 

A system has been proposed to be installed on freight rollingstock to monitor the 

dynamic behaviour of a fleet of wagons throughout their service life.  A small, low cost, 

self powered, wireless device, called a “Health Card”, was to be mounted on the body of 

each wagon.  Each device would be capable of measuring accelerations, analysing them 

online, and producing report codes on either a periodic or event-driven basis.    

When a number of wagons are marshalled together into a train, the devices would form 

a radio network and report information to a master system in the locomotive.  Once the 

train is in motion, the cards would sense the ride motion of their host wagons and report 

behaviour to the master system.  The master system in the locomotive would receive 

both stored information and real time indications from the Health Cards in the network.  

The holistic information gathered from the Health Cards would allow the system to 

monitor the running condition of the wagons and the track as they interact together.   
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The system would provide real time indications to the driver and/or supervisory system.  

The onboard system would communicate periodically with a centralised system.  The 

centralised system would maintain a database to accumulate a history of dynamic 

behaviour.   The database would be used to assess trends and possibly to determine safe 

speed limits on a trip by trip basis.  

 
Figure 3-1 Proposed System Arrangement 

The system was expected to produce benefits to both railway and rollingstock 

maintainers and operators.  It would also provide a platform for ongoing research and 

optimisation of the rail system.  Information from the system could be used to:  

• prioritise wagon maintenance based upon relative dynamic performance of 

wagons 

• prioritise track maintenance based upon the dynamic response of traffic 

• determine speed limits based upon recent history of dynamic behaviour  

The Health Card is the key device that would enable the system to operate.  The 

proposed Health Card is a small, unobtrusive device that is self powered and 

communicates wirelessly.  The device incorporates motion sensors and algorithms for 
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online signal analysis.  Due to the limited throughput of the network, all signal analysis 

was to be done onboard the device.    

3.2 PROTOTYPE HEALTH CARD 

A set of four prototype Health Cards was developed by an engineering team at Central 

Queensland University during the first nine months of this research.  Each prototype 

Health Card incorporated a 27MHz microcontroller with 256kB of onboard RAM, four 

dual axis accelerometers, a GPS receiver, two low power radios, lithium ion batteries 

with management circuits, and a solar panel.  The purpose of the prototype was firstly to 

prove the capability of the equipment, and secondly to enable ongoing research into the 

capabilities of the proposed Health Card system.  Figure 3-2 shows one of the four 

systems installed on a ballast wagon. 

 
Figure 3-2 Health Card prototype installed on a ballast wagon 

 
Figure 3-3 presents the arrangement of the prototype Health Card with photographs of 

the installed system.   The processor, batteries and power management electronics were 

located in an enclosure mounted on the deck of the wagon, along with a solar panel.  
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Accelerometers resided at three corners, two of which had radios to communicate 

between wagons.   

 
Figure 3-3 Health Card Prototype System Arrangement 

 

3.2.1 Network Throughput Constraints 

The network topology prohibited Health Cards from transmitting raw data for further 

analysis.  The network of Health Cards was arranged in a message passing chain 

topology.  The actual throughput of the network had not been determined in quantified 

terms. However, the potential for network congestion was very high, considering that 

freight trains can run with over one hundred wagons.  Consequently, the algorithm 

onboard the Health Card was required to analyse and interpret the acceleration signals, 

reporting event codes only to the network.  The network protocol for the prototype 

system allowed one value per degree of freedom to be transmitted from each Health 

Card approximately every half second.  This constraint was conservative compared to 

the expected throughput restriction in the fully developed system when installed on a 

train of up to one hundred wagons in a message passing topology. 
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3.2.2 Processing Capability 

The hardware design for the Health Card device employed a single microcontroller [20] 

which was required to perform the following tasks: 

• continuously sample 8 channels of PWM signals at 200 samples/sec per channel 

• manage sampled data in 256kB of onboard memory 

• analyse the signals online 

• interface with the radio modules and perform communications routines to 

implement the device network. 

Furthermore, the device was to be powered by solar energy, therefore the power budget 

for the entire prototype Health Card was 0.5W, with a target of 50mW for the final 

version.   CPU clock speed is the primary limiting factor for data processing on a 

microcontroller, and is directly proportional to power consumption.  The clock speed for 

the prototype was limited to 27 MHz.  

3.2.3 Sensor Location and Type 

Sensing was restricted to accelerometers on the wagon body.  The design of the final 

device was to be feasible for installation on every wagon without hindering normal 

operation and maintenance of the rollingstock.  Therefore, sensing was restricted to the 

wagon body, with no sensing of suspension components.   Acceleration sensors were 

the only viable alternative at the time of the first prototype.  However, low cost 

rotational velocity sensors were becoming feasible toward the end of this research 

program.  The first prototype Health Card used the Analog Devices 

ADXL202/ADXL210 Low Cost ±2g/±10 g Dual Axis MEMS® Accelerometers with 
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Digital Output [22].  The accelerometer device used silicon structures on a silicon chip 

to measure instantaneous acceleration in an inertial frame of reference.  The sensing 

capabilities included static and dynamic accelerations in two perpendicular axes.   Four 

dual axis accelerometers were incorporated in the prototype design.   These could be 

located in various position on the wagon body.   

3.2.4 Sensing Arrangement 

The sensing arrangement for the Health Card Prototype was specified as part of this 

research.  The aim of the sensing arrangement was to capture roll, pitch, yaw, vertical 

and lateral accelerations of the wagon body.  This was to be achieved with four dual 

axis accelerometers with one axis in the longitudinal direction.  The hardware was also 

to be minimised, therefore a unit on each corner was not desirable.  A compromise was 

reached to sense three corners and assume a rigid wagon body for the frequencies of 

interest.  

Figure 3-4 shows the locations and sensor orientations.  Two axes were measured at two 

corners and three axes at one corner.  The system dealt primarily with relative motion in 

the lateral plane; however one longitudinal axis was included.  Figure 3-5 shows how 

the measured axes are related to the motion of the wagon body. This sensing 

arrangement was also designed to integrate with the radio communications 

configuration which included radio transmitters at each end of the wagon. 
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Figure 3-4 Accelerometer Locations and Axis Naming Convention 

 
Figure 3-5 Relating corner accelerations to 5 degrees of freedom 

3.2.5 Signal Pre-Processing 

The signal pre-processing adopted for the first prototype Health Card is shown in Figure 

3-6 for one of the eight channels.  The ADXL210 accelerometers provided a choice of 

analog output or pulse width modulated (PWM) output.   The PWM option was adopted 
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for the first generation prototype to eliminate the need for analog to digital conversion 

onboard the microcontroller. 

The sensing element, anti-aliasing filter, and PWM generator resided within the 

accelerometer package. The anti-aliasing filter was a low pass first order RC network, 

with adjustable corner frequency selected by an external capacitor.  The PWM generator 

converted the filtered analog signal to a 1 kHz PWM signal.   

The PWM pulse signal was demodulated by the microcontroller using a “capture and 

compare” port to measure the pulse durations.  An interrupt routine sampled values 

from the capture compare port at 200Hz per channel.  The reduced sampling rate was 

required to minimise the processing overhead generated by the sampling interrupt 

routine, and to allow enough time for the routine to measure the eight incoming 

channels.   

 
Figure 3-6 Prototype Health Card Signal Pre-Processing (one of eight axes) 

3.2.6 Signal Filtering 

The Nyquist sampling theorem [23], states that the minimum sampling rate must be 

twice the bandwidth of the signal.   
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If the Nyquist rate is not satisfied, signal aliasing will occur.  Figure 3-7 illustrates 

signal aliasing.  A sinusoidal waveform is sampled at a rate less than twice the signal 

frequency resulting in a false sampled waveform. 

 
Figure 3-7  Example of Signal Aliasing 

The single order low pass filter was included in the ADXL210 device to ensure that the 

eq. 3-1 was satisfied for the conversion to 1kHz PWM.  However, in this application, 

the samples were to be further decimated to 200Hz at the microcontroller (c.f. Figure 

3-6).  Hence the Nyquist rate had to be satisfied for 200Hz sampling. 

According to eq. 3-1, the signal could be filtered at 100Hz and sampled at 200Hz 

without aliasing.  However, this assumes an ideal filter, which is represented in Figure 

3-8.  The ideal filter removes all content at frequencies higher than the cut-off frequency 

(fc), and does not affect the signal at frequencies lower than fc.   
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Figure 3-8 Ideal Low Pass Filter for 200Hz sampling 

In practice, an ideal filter cannot be achieved.  Real filters produce finite attenuation of 

signals above the cut-off frequency.  The transition from minimum attenuation to 

maximum attenuation occurs across a finite frequency range.  In this case, only a first 

order low pass filter was available in the hardware configuration and a signal range of 0 

to 10Hz was to be analysed.  A first order filter attenuates signal above the cut-off 

frequency at -20dB per decade.  This meant that for a cut off frequency of 10Hz, the 

attenuation at 100Hz was -20dB or 1/10 signal reduction.   

 
Figure 3-9  Low Pass Filtering for Prototype Health Card. 

Acceleration signals are particularly dominated by high frequency content due to the 

derivative order of acceleration, as explained further in 4.1.2.   A small vibration at 

100Hz results in very large magnitude acceleration signal.  Initial testing of the 
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prototype pre-processing arrangement was performed by comparing data with a 

benchmark accelerometer sampled at a much higher sampling rate.  The results showed 

that the signal collected by the prototype was heavily aliased, i.e. the low frequency 

content was significantly altered compared to the benchmark signal.  This identified that 

the single order filter in the prototype did not provide sufficient attenuation at 

frequencies higher than 100 Hz.   

There were three options to add attenuation at 100Hz which were to:   

1. Add of a higher order filter to the signal path.  This was not possible because the 

signal was converted to PWM within the device, and the internal signal path 

could not be interrupted to place a filter in series.   

2. Increasing the sampling rate.  The sampling rate was limited by the clock speed 

of the microcontroller, which was limited by the 0.5W power budget of the 

device.    

3. Introduce a mechanical filter to attenuate frequencies above the frequencies of 

interest.   This was the only feasible option without rebuilding the electronics 

hardware. 

A mechanical filter was achieved by mounting the enclosures on steel plates which were 

mounted to the wagon body on resilient mounting pads.  The steel plates increased the 

mass m of the sensor and the resilient mounts introduced a spring-damper characteristic 

with spring constant K.   The resulting second order system had a cut-off frequency fc 

given by eq. 3-2 which further attenuated the high frequency content of the signal until 

signal aliasing was insignificant.   
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m
Kfc π2

1
=  

eq. 3-2 

K and m were chosen to produce a cut-off frequency of around 20Hz.  This would 

produce an additional 40dB per decade attenuation above 20Hz.   

 
Figure 3-10  Low Pass Filtering for Prototype with Additional Mechanical Filter. 

A mechanical filter is not an unusual method for eliminating high frequency content 

from acceleration signals. It is reported in [25] that a resilient mount was used to attach 

an accelerometer to an axle-box of a wagon to detect short wave rail defects.   

The intention for the next generation prototype of Health Card was to adopt the analog 

output option on the ADXL210 accelerometer and replace the mechanical filter with a 

higher order electronic filter prior to A/D conversion.   

3.2.7 Algorithm Requirements 

Online analysis algorithm/s were required so that the Heath Card device could operate 

for testing and ongoing research.  Chapter 6  describes the implementation of an initial 

algorithm that was developed for the project as part of this research.  It was developed 

primarily to allow the prototype to run for multi wagon field testing.  However, its 
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secondary purpose was to prove that time-frequency analysis of eight concurrent signals 

could be performed on a low power embedded processor.  Chapter 4 introduces the 

theory of time-frequency analysis and Chapter 5 reports on the application of time-

frequency analysis to field data.  The discussions of Chapter 5 examine time-frequency 

analysis as a mechanism for detection of dynamic performance of the wagon-track 

system in the context of the Health Card system.   

The final generation Health Card would require algorithms to perform detection and 

classification of dynamic events onboard the device without human intervention.  This 

is discussed further in Section 6.4. Automatic signal classification is an area of research 

which is outside the scope of this thesis. However, some review of literature in this area 

was undertaken and a recommended direction for future research is detailed in Section 

6.7.     

3.3 CONCLUSION 

This chapter has described the Health Card system concept and the initial prototype that 

was developed in parallel with this research and forms the context for this research.   

Several challenging system constraints are identified which include: 

• Sensor Type and Placement: Sensing was limited to accelerometers that 

could only be placed on the wagon body. 

• Accelerometer Data Sampling Rate:  The prototype Health Card could not 

sample each channel faster than 200 s/sec.  This resulted in a theoretical 

bandwidth of 100Hz, however with practical filtering issues the bandwidth was 

limited further to 10Hz. 
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• Processing Speed and RAM:  The Health Card processor was limited to 

27MHz clock speed.  The memory available for data processing was limited to 

256kB of RAM. 

• Network Throughput:  The prototype network would not allow more than six 

16bit values (one per degree of freedom) to be transmitted from each Health 

Card approximately every half second.  

These system constraints present a significant challenge for an embedded analysis 

algorithm.  The algorithm would be required to analyse all of the acceleration signals to 

a level adequate for automatic detection of dynamic events.  The next chapter examines 

the nature of acceleration signals and introduces time-frequency analysis as a necessary 

basis for online signal detection.  The capabilities of time-frequency analysis are 

explored in Chapter 5 by application to field data taken from a hopper wagon in service.  

The feasibility of time frequency analysis under the constraints of the device is then 

proven with an implementation detailed in Chapter 6 

 



46 

4 Time Frequency Analysis of Acceleration Signals 
Online analysis of acceleration signals onboard a low powered device is a significant 

challenge.  Final Health Card algorithms would be required to process the acceleration 

signals and generate coded reports without any further analysis offline.  Existing ride 

monitoring systems and associated standards apply RMS and peak to peak measures to 

create exceptions.  This chapter firstly examines the RMS and peak to peak measures, 

and then highlights the importance of frequency based analysis in order to detect 

significant events.  Fourier time-frequency analysis is explained and a more 

contemporary alternative, wavelet analysis is introduced for comparison. 

4.1 ONLINE ANALYSIS OF ACCELERATION SIGNALS 

The existing ride monitoring systems and associated standards identified in Chapter 2  

use RMS and peak to peak measures to create exceptions.  The waveforms that 

generated the exceptions are then stored or transmitted to land-based systems for further 

offline analysis.  In the case of the Health Card system, network throughput prohibits 

transmission of waveforms.  Therefore, algorithms onboard the Health Card are 

required to process the acceleration signals and generate coded reports without any 

further analysis offline.   

4.1.1 Online Analysis in Existing Systems and Standards 

Existing ride monitoring systems create exceptions based upon peak to peak (Pk-pk) 

magnitude and root mean square (RMS) magnitudes.  The FRA levels [6] and 

maintenance indication levels applied in North American track monitoring systems [13], 

introduced in Section 2.3.3, are summarised in Table 4-1.  
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Table 4-1 Example Ride Acceleration Limits in [13] and [6] 

 Level 2 
(Maintenance limits) 

Level 1 
(FRA limits) 

Filtering 
Requirements 

Body 
Vertical 

0.40-0.59g Pk-pk 

 

> 0.60g Pk-pk 

 

10 Hz filtered,          
1 second widow 

Body  

Lateral 

0.25-0.49g Pk-pk > 0.50g Pk-pk 

 

10 Hz filtered,          
1 second widow 

Bogie 
Lateral 

0.35-0.39g RMS  

 

> 0.40g RMS  10 Hz filtered,           
2 second widow 

 

Comparable limits are included in Australian minimum requirements for rollingstock 

performance [16][7][9] summarised in Table 4-2.  In the Australian railway standards, 

all acceleration signals are to be filtered to below 10Hz. 

Table 4-2 Australian Ride Performance Standards 

Assessment Quantity  Limit 

Body vertical  0.80g (pk-pk) 

 0.50g (av pk-pk) 

Body lateral  0.50g (pk-pk) 

 0.35g (av pk-pk) 

 

The RMS value gives a positive valued measure of the magnitude of cyclic variation in 

the signal. 
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eq. 4-1 

 Peak to peak (Pk-pk) values give a positive valued measure of the magnitude of the 

extremities of the signal. 

 
Figure 4-1 Root Mean Square (RMS) and Peak to Peak Values 

RMS and Pk-pk measures do not take into account the frequencies of the oscillations in 

the signal.  The following section examines the significance of the frequency content of 

signals. 

4.1.2 Frequency Content of Acceleration Signals 

The magnitude of acceleration signals is highly dependent on frequency of vibration.  

The magnitude of measured acceleration signals is typically dominated by high 

frequency “noise” due to structural vibrations.  This is typically controlled by low pass 

filtering to remove the high frequency content before sampling and further analysis.   

The reason for the dominating nature of high frequency noise is the fact that 

acceleration is the second derivative of displacement.  Acceleration is the derivative of 

velocity v(t) and the second derivative of displacement s(t). 

Pk-pk 
RMS 
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2
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eq. 4-2 

Differentiation in the time domain is equivalent to multiplication by ω in the frequency 

domain where ω = 2πf.  (c.f.4.3 for an introduction to the Fourier transform) A proof of 

this property of the Fourier transform can be found in [26] 

)()2()( fXfjtx
dt
d FT π⎯⎯→←  

eq. 4-3 

)()2()( 2
2

2

fXfjtx
dt
d FT π⎯→←  

eq. 4-4 

Hence, the magnitude of an acceleration signal is proportional to the displacement 

multiplied by the frequency squared.   

The effect is clearly demonstrated in Figure 4-2 which shows a simulated acceleration 

in the form of a constant magnitude frequency sweep (“chirp”) signal (1).  The pk-pk 

amplitude of the acceleration signal is constant at 20m/s2 (approx. 2g).  However the 

frequency sweeps from 0 to 10Hz over a 10s period.  The corresponding velocities and 

displacements are calculated by integration and plotted below that acceleration signal as 

(2) and (3) respectively.  The result demonstrates that high frequency accelerations 

relate to very small velocities and negligible displacement, however low frequency 

acceleration signals of equal pk-pk and RMS magnitude relate to very large velocities 

and displacements.  The significant displacements occur in the 0-5Hz range. 
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Figure 4-2 Acceleration Frequency Sweep from 0 to 10Hz (1) with Velocity (2) and 

Displacement (3) 

 
The significance of lower frequency accelerations was also demonstrated by the field 

data acquired from a wagon as detailed in Section 5.1.  An example of a large bounce 

that occurred during the data acquisition is shown in Figure 4-3.  The signal relating to 

the large bounce is shown by the circle.  The unfiltered vertical acceleration (1) 

completely hides the bounce signal in high frequency noise.  The 10Hz filtered signal 

makes the bounce signal visible (2), however the low frequency content is the 

distinguishing feature, not increased magnitude.  The signal was integrated offline (a 

process that requires careful filtering to remove integration drift) to produce velocity (3) 

and displacement (4).   The figure shows that the magnitude of the acceleration signals 

highlight discontinuities rather than large magnitude displacements.   
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Figure 4-3 Large Bounce Site:  Acceleration, Velocity and Displacement. 

Discontinuities in motion of the wagon body can be induced by the non-linear elements 

in the suspension system, including dry friction dampers, bump stops and slack between 

unsprung interfaces.  The field data also showed that high frequency vibrations occur at 

the rail joints in many locations.  The dipped rail joint and non-linear “stick and bump” 

actions are much less important to detect than resonant behaviour, however they 

dominate the pk-pk and RMS magnitudes of the acceleration signals.   

In the Health Card application, it is most desirable to detect large displacements in the 

lateral plane, and particularly cases of resonant oscillation.  Resonant modes of 

oscillation for a railway wagon are generally quite low.  The modal analysis results in 

Table 2-4 shows all modes for a loaded wagon are below 5Hz.   
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European standards for acceptable dynamic performance [27] are summarised briefly in 

Table 4-3.  The European standards give more consideration to the frequency content of 

the signals than the North American and Australian standards.  The behavioural limits 

are related to track fatigue and running behaviour, whereas the safety limit is related to 

derailment risk.  The safety limits are filtered at lower frequencies than the behavioural 

limits.  This approach is a significant improvement on the Australian and North 

American standards.   

Table 4-3 European Ride Performance Standards 

Axis Limit Behavioural  Safety 

Body Vertical 0.50g Pk-pk 

0.20g RMS 

0.4-10Hz 

 

0.4-4Hz 

Body Lateral 0.30g Pk-pk 

0.13g RMS 

0.4-10Hz 6Hz 

Bogie Lateral 12-(Mb/5) Pk-pk 

6-(Mb/10) RMS 

- fo+/-2Hz  

Mb = Bogie Mass    f0 = theoretical natural oscillation frequency 
(NB: In [27] the measurement referred to above as peak to peak (Pk-pk) is actually the width of the 

statistical interval 0.15% to 99.85% of the magnitude distribution of the signal.  See [28] for more on 

statistical signal analysis) 

In the case of Health Card, algorithms are required to analyse the signals online and 

report event codes.  The events and behaviours that are desirable to detect are expected 

to be the subject of ongoing research.  This section has demonstrated the importance of 

local frequency content when analysing acceleration signals.  The following sections 

introduce time-frequency analysis which analyses signals according to their local 

frequency content.  
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4.2 TIME FREQUENCY ANALYSIS 

Time frequency analysis is a broad term describing the assessment of a signal based 

upon its time-localised frequency content.  Various specialised techniques exist which 

achieve optimal resolution in time and frequency.  A comparative study of time 

frequency techniques in various applications is provided in [29].   The most generic 

technique is the Fourier spectrogram.  In most cases, the spectrogram is used initially to 

explore a signal.  Once the finer aspects of the system which the signal represents are 

known, more specialised techniques are used to highlight those features in the time-

frequency representation.    

The following sections will introduce the concept of time frequency analysis, starting 

with frequency analysis using the Fourier transform.  Then, the more specialised 

technique, wavelet analysis, will be introduced for comparison throughout the field data 

analysis.        

4.3 FOURIER ANALYSIS 

4.3.1 Continuous Fourier Transform 

The Fourier Transform (FT) converts a continuous time signal in the frequency domain.  

It does this by decomposing the signal into a sum of complex exponentials with 

continuously varying frequency.  The amplitudes and phases of the exponential 

components make up the complex Fourier representation X(f) which is calculated by the 

Fourier Transform integral shown by:     

dtetxfX ftj∫
∞

∞−

−= π2)()(  

eq. 4-5 
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Each value of X(f) is the time integral of the signal x(t) multiplied with the 

corresponding basis function ftje π2−  which is a complex exponential at the frequency f.  

X(f) is therefore a complex decomposition of the original signal x(t) into constituent 

exponential functions at each frequency f.   

The transform is reversible such that the time signal can be reconstructed from the 

Fourier representation by the inverse Fourier transform given by  

 

eq. 4-6 

The signal X(f) is referred to as the “frequency domain” representation of the signal, 

whereas x(t) is referred to as the “time domain” representation of the signal.   

4.3.2 Discrete Fourier Transform 

In computer systems, continuous signals are sampled at regular intervals, resulting in a 

sequence of discrete values.  Discrete Fourier Transform (DFT) is used to convert a 

sampled time representation of a signal into a sampled frequency representation.  The 

DFT is given by eq. 4-7, where k is the frequency index, n is the time index, and N is the 

total number of samples in the sequence. 
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eq. 4-7 

Like the continuous FT,  the DFT is also reversible.  The inverse Discrete Fourier 

Transform (IDFT) given by eq. 4-8.   

dfefXtx ftj∫
∞
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    k = 1..N 

eq. 4-8 

An example time signal is shown in Figure 4-4 with corresponding DFT magnitude and 

phase plots.  The discrete time signal x(n) is composed of two sinusoids at frequencies 

f1=10Hz and f2=30Hz sampled Δt=0.001 sec such that 

)03.02sin()01.02sin(
)2sin()2sin()( 21

nn
tnftnfnx

ππ
ππ

+=
Δ+Δ=

   n = 1..512 

eq. 4-9 

An N=512 point DFT is performed on x(n) resulting in X(k) which consists of 512 

complex values with frequency spacings given by  

tN
f

Δ
=Δ

1
  Hz 

eq. 4-10 

The magnitudes and phases of the values are plotted in what are referred to as the 

magnitude spectrum and phase spectrum of the signal.  Typically, only the magnitude 

spectrum is of interest when using DFT to analyse a signal, because the magnitude 

spectrum represents the energy of the signal in each frequency band Δf.    However, the 

phases contain important information necessary to reconstruct the time signal with the 

IDFT.   

The two magnitude peaks on the positive side of the vertical axis correspond to the two 

frequency components, 10Hz and 30Hz.  The same information is mirrored in the 

negative frequencies.  (Note that the DFT produces a sampled spectrum: the two peaks 

are of equal magnitude, however the sampling of the 30Hz peak does not coincide with 
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the peak.  Finer sampling of the frequency spectrum can be achieved by increasing the 

DFT length N, as can be seen in eq. 4-10.) 

The Power Spectrum is often used to present the distribution of signal power over the 

frequency spectrum.  The power spectrum is simply the magnitude squared.  It can be 

calculated by multiplying the DFT result by its complex conjugate.    

)()()( *2 fXfXfX =  

eq. 4-11 
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Figure 4-4  Discrete Fourier Transform Example 
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4.3.3 Fast Fourier Transform 

To compute the DFT by eq. 4-7, the number of computations required is proportional to 

N2, thus preventing its use for online algorithms.  Providentially, fast algorithms have 

been developed which calculate the DFT with drastically reduced computational effort.  

These Fast Fourier Transforms (FFT’s) capitalise on the fact that it is possible to split a 

signal into two parts, take the DFT of each part, then combine the results.  

Conveniently, the combined result is the same as taking the DFT of the whole signal, 

but now the effort is proportional to (N/2)2 instead of N2.  By the same process, the DFT 

task can be broken down successively, reducing the computational effort from N2 to 

(N/2)log2N.  The inverse DFT can also be calculated by a similar algorithm known as 

the IFFT. 

To illustrate the reduction, Figure 4-5 compares the computation for FFT verses direct 

computation of the DFT.   

 
Figure 4-5 Comparison of DFT and FFT Processing Load 
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found in [23] and [24].  For the microcontroller used in the Health Card prototype, a 

library of C language FFT function calls were provided by the manufacturer [30].   

4.4 ANALYSIS OF NON-STATIONARY SIGNALS 

Non stationary signals are those which contain spectral information that varies with 

time.  Vehicle ride signals are highly non-stationary with frequency content that 

changes with transient track excitation and lateral instability.   

The Fourier magnitude or power spectrum is ideal for viewing the frequency content of 

a signal; however the time location at which the frequencies occur is hidden.  (The 

information is not lost, but hidden in the phase information, where it is difficult to 

interpret.) 

Figure 4-6 illustrates the concept of stationary and non-stationary signals and how they 

appear in the frequency domain.  Three signals are compared with their respective 

power spectra.  The first signal (top) is stationary, with component frequencies at 10Hz, 

20Hz and 30Hz continuing throughout the signal.  These frequencies are manifest in the 

power spectrum as three spectral peaks.  The second signal (middle) is non stationary.  

It has three component frequencies the same as the first, but they occur sequentially in 

time.  Note that the power spectra is almost identical in form to the first, differing only 

in magnitude and sharpness.  The third signal (bottom) is also non-stationary.  The 

frequency sweeps from 0 to 10Hz over a period of 20sec.  Here, the power spectrum 

shows that frequency content existed between 0 and 10Hz, however the sequence is lost.   

This loss of time location can be overcome by taking the DFT over shorter intervals of 

time. 
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Figure 4-6 Time Signals and Corresponding Power Spectra: Sum of Sinusoids at 

10, 20 and 30Hz (top); Sequence of Sinusoids at 10, 20 and 30Hz (middle); 
Frequency Sweep of 0-10Hz (bottom).  

4.4.1 Short Term Fourier Transform and Spectrogram 

When analysing the frequency content of a non-stationary signal, it is necessary to find 

a representation that will capture the frequency content and its time location.  A natural 

extension of the FT for analysing non-stationary signals is the short term Fourier 

transform  (STFT), or in the discrete case, the (STDFT).   

The DFT can be taken over short time periods, within which the signal can be assumed 

stationary. This gives a series of localised spectra which describe the time changing 

frequency content.  The power spectrum for each time interval can be displayed in a 

three dimensional plot with axes: time, frequency and magnitude.  This plot is known as 
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a spectrogram.   Figure 4-7 shows the spectrogram of the same three signals as Figure 

4-6.  In this case, the magnitudes of the spectrogram are displayed as an inverted 

grayscale image.  (i.e. min. is white, max. is black).   The vertical axis is frequency and 

the horizontal axis is time.  On inspection, the component frequencies and their 

sequence in time are clearly seen.   

 
Figure 4-7 Time Signals and Corresponding Spectrogram: Sum of Sinusoids at 10, 
20 and 30Hz (top); Sequence of Sinusoids at 10, 20 and 30Hz (middle); Frequency 

Sweep of 0-10Hz (bottom). 
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inherently assumes that the signal is periodic, and that the N samples are one complete 

period, see Figure 4-8.   The resulting discontinuities at the boundaries introduce 

frequency components to the magnitude spectrum which interfere with the true 

components of the signal.  

 
Figure 4-8 DFT Assumed Periodicity and Boundary Discontinuities 

A window function is normally used to smooth the edges of the short term signal.  

Figure 4-9 illustrates the process.  The signal of Figure 4-4 is analysed over a shorter 

period.  First, the signal and its magnitude spectrum without windowing is shown (top).  

Note the interfering side lobes around the spectral peaks.  Next, a window function is 

applied (middle).  In this case, a Hanning window (raised cosine) is used.  The spectrum 

of the Hanning window is shown to the right hand side.  The first signal is multiplied 

with the window function to produce the windowed signal (bottom).  The resulting 

magnitude spectrum is shown to the right.  Note that the interference between the 

spectral peaks is reduced; however the resolution of the peaks is diminished.    
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Figure 4-9 Windowing  

A range of different window functions can be applied with different advantages and 

disadvantages [23].   When choosing a window, the predominant trade-off is main-lobe 

width which affects the peak resolution, versus side-lobe reduction which affects 

spectral interference.  These properties are compared in Table 4-4 for some commonly 

used window types.  The Hanning (raised cosine) window was adopted for the 

spectrogram analysis throughout this thesis.      
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Table 4-4 Comparison of Commonly Used Window Types (source [23]) 

Window Type Peak Side-lobe  
Amplitude (relative) 

Approximate Width  
of Main-lobe 

Rectangular -13 4π/(N+1) 
Bartlett -25 8π/N 
Hanning -31 8π/N 
Hamming -41 8π/N 
Blackman -57 12π/N 
 

Besides the limitation of side-lobe interference and main-lobe widening, there is a basic 

limitation to the resolution that can be achieved in the time frequency plane. 

4.4.3 Limitation of Time Frequency Resolution  

The resolution of the time-frequency representation is limited by the uncertainty 

principle derived in [29].  The frequency of a signal cannot be determined without some 

finite period of time in which to observe the signal.   The more time taken to observe the 

signal, the more precisely the frequency content can be determined.   Conversely, the 

less time taken to observe the signal, the more precisely the time location can be 

determined.  Therefore, it is possible to achieve a high resolution in frequency or a high 

resolution in time, but time and frequency cannot be resolved simultaneously beyond a 

theoretical limit.    

This is illustrated in Figure 4-10.  The frequency resolution Δf becomes less defined as 

the time window Δt is reduced, and more defined as the time window is increased.  The 

time-frequency resolution is limited by the area of the rectangles.   The theoretical limit 

of time-frequency resolution is: 
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π4
1

≥ΔΔ ft  

eq. 4-12 

 
Figure 4-10 Time-Frequency Plane and Time Frequency Resolution 

The Fourier Spectrogram divides the time-frequency plane uniformly for all 

frequencies.  The practical consequence is that the location of short transient high 

frequency detail is diluted across Δt.   

Wavelet analysis is a technique which allows the time-frequency plane to be divided in 

a more flexible way, such that a smaller Δt is used for higher frequencies (with the 

inherent loss of frequency resolution) and a larger Δt is used for lower frequencies (with 

the inherent gain in frequency resolution).  Section 4.5 introduces wavelet analysis and 

discusses this topic in more detail.  

4.5 WAVELET ANALYSIS 

Wavelet analysis is a special form of time frequency analysis which has recently 

attracted experimental interest in a wide range of applications.  Examples in literature 

include: detection of transient fault signals in power systems [31]-[56]; machine and 
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process fault detection [57]-[59]; vibration analysis [60]-[70]; medical signal analysis 

[71]-[74]; and road roughness indexing [75].  Experimental railway applications for 

wavelet analysis include: direct analysis of track irregularity data [76]; magnetic rail 

head defect detection [77]; wayside acoustic signal analysis [78]; and image processing 

for rail head inspection [79].  Wavelet analysis has shown good success at locating 

small scale features or details amongst larger scale signals.  This makes it suitable for 

detecting transient signals such as spikes on AC power lines, and bearing fault signals 

on rotating machinery. 

The Wavelet Transform (WT) is a technique that is relatively new compared to the 

Fourier transform. According to [80] the wavelet method was established by Stephane 

Mallat in 1988 [81].   In contrast, Fourier transform was founded by Joseph Fourier 

(1768-1830) in the early nineteenth century.   

4.5.1 Wavelet Transform   

A wavelet is, as the name suggests, a small wave.  It is any waveform with a zero mean 

that exists for a finite amount of time.  An example wavelet is shown in Figure 4-11. 

 
Figure 4-11  Example Wavelet 

 

The WT is calculated by convolving the wavelet with the original signal. (i.e. shift the 

wavelet in time in relation to the original signal, multiply the shifted wavelet with the 
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original signal, then sum the result to produce a single value.  Repeat for each time 

shift).  The convolution is repeated with the wavelet scaled up, Figure 4-12(3), to 

capture low frequency (large scale) features, and scaled down (1) to capture high 

frequency (small scale) detail.   

 
Figure 4-12 Wavelet Scaling 

The continuous wavelet transform C(a,b) of a signal s(t) is given by  eq. 4-13, where 

Ψ(t,a,b) is the wavelet, a is the scaling factor, b is the position of the wavelet in the 

signal. 
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eq. 4-13 

The relationship between Fourier analysis and Wavelet analysis can be seen by 

comparing eq. 4-13 with the Fourier integral of eq. 4-14 
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The Fourier transform uses a complex exponential ftje π2−  as the basis function with 

variable frequency f.  Whereas, the Wavelet transform uses a wavelet Ψ(t,a,b)as the 

basis function with variable time shift b and scale a. 

 
Figure 4-13: Fourier Basis Function (left) vs Wavelet Basis Function (right) 

The WT is not strictly a time-frequency representation, but rather, a time-scale 

representation of the signal.  However, WT can give a time-frequency analysis if the 

centre frequency of the wavelet is estimated for each scale.  In comparison to the 

STDFT time frequency distribution of Figure 4-10 which is divided uniformly across all 

frequencies, the WT produces a non-uniform distribution as represented in Figure 4-14.  

WT exploits the natural tendency for high frequency content to be more transient than 

low frequency content.  Therefore, the higher frequencies are better represented with 

finer time and broader frequency resolution.  Conversely, lower frequency content tends 

to change more slowly, so it is represented with broader time and finer frequency 

resolution.  Note that the time-frequency resolution, given by the area of the rectangles, 

does not change.  This area is ultimately limited by the uncertainty principle described 

in4.4.3.  The choice of wavelet will determine how closely this limit is approached. 

Fourier Basis  Wavelet Basis 
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Figure 4-14:  WT Time-Freq Relationship 

Any finite length function with zero average magnitude can be used as the wavelet basis 

function.  A practical comparison of the commonly used wavelets and their respective 

properties is given in [80].   Some wavelets can be implemented with a fast algorithm 

using a bank of filters. The following section introduces filter bank implementation of 

wavelet analysis in more detail. 

4.5.2 Fast Wavelet Algorithm 

The continuous wavelet transform (CWT) is a processor-hungry operation, which 

convolves the signal with the wavelet for every scale.  In fact, the CWT produces a 

large redundancy of information.  A reduction in processing can be achieved by the 

Discrete Wavelet Transform (DWT) which scales the wavelet in powers of two in 
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process referred to as diadic scaling.  Figure 4-15 illustrates this.  The reduction in 

calculation yields no loss of information from the original signal.   

 
Figure 4-15  Diadic (powers of 2) Scaling 

Diadic scaling reduces the computational effort to a large extent, however true gains in 

efficiency are achieved by a fast algorithm developed by Mallat [81].   The DWT can be 

implemented online using a bank of digital filters as shown in Figure 4-16.   

The process of fast wavelet analysis is as follows:  The digital input signal S(n) is 

passed through a high-pass filter H and down-sampled to remove every second sample, 

yielding the first level of detail D1.  Simultaneously, S(n) is passed through a low pass 

filter L and down-sampled to produce the first signal approximation A1.  The down-

sampling reduces the redundant samples produced by simultaneous filtering.  The 

process is repeated for A1 to produce D2 and A2.  A2 is then decomposed further into 

D3 and A3.  D1, D2, D3 and A3 form the coefficients of the time-scale representation 
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of the signal.  Figure 4-16 shows a three level decomposition, however more levels can 

be added to yield larger scale detail and approximation. 

 
Figure 4-16: Fast Wavelet Analysis Transform 

The wavelet shape itself is “created” from the coefficients of the filters, and can be 

viewed by successively convolving and up-sampling the high pass filter coefficients.  

By this process, many new and interesting wavelet shapes have been created.   

If perfect signal reconstruction is required, special filters called Quadrature Mirror 

Filters must be used.  There is detailed literature available on this topic [80][82].  

However, signal reconstruction is not necessary in this research application, which is 

only concerned with signal analysis.   

An example diadic wavelet analysis is shown in Figure 4-17.  The analysed signal is 

produced by a simulation package modelling a wagon running over a vertical track 

irregularity.   The transient signal, as each bogie runs over the irregularity, has a sharp 

impact spike followed by a resonant oscillation.   Scales 512 and 256 show the overall 
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presence of the transient.   Scale 128 corresponds with the resonant oscillation.  Scales 

64, 32 and 16 reveal the time location of the impact spikes. 

 
Figure 4-17  Diadic Wavelet Analysis of a Transient Signal 

4.5.3 Wavelet Type Selection 

The simplest wavelet arising from a filter bank is the Haar wavelet which is the square 

wave shown in Figure 4-18.   

 
Figure 4-18 Haar Wavelet 

A comparison of properties of the various wavelets is given in [80].  Many of the 

discerning properties of the wavelet types are associated with other applications of 

wavelets including signal compression and signal smoothing.  The wavelet properties 

that are important in this application are  
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1. it can be implemented with a filter bank, and  

2. it achieves a good time-frequency resolution.    

The Haar wavelet fulfils both of these properties and was therefore adopted for the 

signal analysis in Chapter 5. 

4.5.4 Relating Scales to Frequencies 

As mentioned previously in Section 4.5.1, wavelet analysis produces a time-scale 

representation of the signal.  In order to relate this to a time-frequency representation, 

the wavelet scales must be converted to equivalent frequencies.  If the centre frequency 

fc of the wavelet is estimated by best fit with a sinusoid, see Figure 4-19, the estimated 

frequency at scale a with a sampling rate Δt is calculated by  

a
tff c

a
Δ

=        

eq. 4-15 
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Figure 4-19 Approximating the Centre Frequency of a Wavelet with a Best Fit 

Sinusoid 

4.5.5 Example of Wavelet Analysis vs Fourier Spectrogram 

Figure 4-20 compares an FFT spectrogram with a Haar wavelet analysis at diadic scales 

with estimated wavelet centre frequencies ( fc ) covering the 0.5 to 10Hz range.   Note 

that, as the scale decreases, centre frequency ( fc ) increases, and frequency step ( Δfc ) 

increases.   
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Figure 4-20  Lateral Wagon Body Acceleration with Wavelet and FFT 

Spectrogram Compared. 

The wavelet analysis highlights the exact time location of the transient spike however it 

does not accurately measure the frequency of the spike.  Conversely, the lower 

frequencies on the right hand side are less resolved in time and more clearly resolved in 

frequency.   

The FFT spectrogram divides the time frequency plane uniformly.  The high frequency 

content of the spike appears less sharp in time but the frequency is measured with peaks 

at 4, 5 and 7Hz.  The low frequency content on the right hand side is also adequately 

resolved.  

More comparison of wavelet analysis and spectrogram can be seen in Chapter 5 with 

their application to the field data analysis. 
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4.6 CONCLUSION 

This chapter firstly demonstrated the importance of the frequency content of 

acceleration signals when using them to analyse physical motion of a wagon body.   

Large resonant motions were shown to produce small magnitude acceleration signals 

compared with less consequential high frequency discontinuities.  The strong 

dependency of signal magnitude on frequency content demands that signal analysis 

algorithms for Health Card monitor frequency content as well as signal magnitude.      

Time frequency analysis was introduced in the form of the Short Term Discrete Fourier 

Transform (STDFT) which can be implemented on a low power processor using Fast 

Fourier Transform (FFT) algorithms.    Wavelet Analysis was also introduced as an 

alternative to be compared throughout the offline data analysis.    The following chapter 

describes the application of these techniques to field data collected from a hopper 

wagon in service. 
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5 Time Frequency Analysis of Field Data  
This chapter presents the application of Fourier and wavelet time-frequency analysis to 

acceleration signals collected from the body corners and bogie sideframes of a wagon.  

The purpose of the analysis is to assess the content of the signals, and the capabilities of 

time-frequency analysis as a basis for detection of dynamic behaviour.  In particular, 

detection of lateral instability, severe vehicle track interaction, and changes in wagon 

parameters are considered.  

This chapter describes the data acquisition that was undertaken, the offline analysis that 

was performed, and the significant results that were obtained.  Results of STDFT 

spectrogram, wavelet analysis and standard RMS and peak to peak techniques are 

compared throughout.  Results for the entire journey are included on the attached 

compact disk, CD01, and results that represent significant findings are presented and 

discussed in the chapter. 

5.1 FIELD DATA ACQUISITION 

Data was collected from a ballast wagon travelling north from station A to just north of 

station B with a full load of ballast, and returning with an empty load.  Figure 5-1 shows 

the test wagon and acquisition system.  Dual axis accelerometers were fitted to each 

corner of the body and each side frame.  The wagon was coupled in a test train with a 

QR test car which is normally used primarily for locomotive testing.  The 

accelerometers were wired back to the testing car which carried the data acquisition 

equipment.  The data acquisition system was an industrial PC running a Labview 

application with a National Instruments data acquisition card. 
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Figure 5-1 Field Data Acquisition 

5.1.1 Purpose 

The purpose of the data acquisition was to provide real data that represented the signals 

available to the Health Card device. The data was to be used to test and demonstrate the 

effectiveness of signal analysis techniques and facilitate the development of an online 

analysis algorithm.  Additional data was also collected from the sideframes to give the 

accelerations of the unsprung masses. 

5.1.2 Test Wagon 

The test wagon was a ballast hopper wagon.  It was a two bin hopper wagon with doors 

that open longitudinally to unload rock ballast onto the track between and beside the 

rails during track maintenance.  Details of the test wagon are shown in Figure 5-2.  The 

wagon had conventional three piece bogies spaced 10.97m apart.  The wheelsets were 

spaced 1.675m apart within each bogie and wheels had a diameter of 850mm.    The 
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wagon was constructed of steel, with an unloaded (tare) mass of 18.8 tonnes, and 

designed to carry a payload of up to 52.2 tonnes with a capacity of 24m3 (level).     

 

Figure 5-2 ballast hopper wagon used for signal acquisition 

5.1.3 Test Track 

The test track section was chosen to provide an interesting level of excitation to the 

suspension of the test wagon.  The track construction was a mix of 31 and 47 kg/m rail 

on timber sleepers with some steel sleepers interspersed at a ratio of 1 in 4 on various 

sections.  The rail was welded and joined in various lengths.  The track was rated for a 



80 

maximum allowable axle load of 15.75 tonnes per axle, and the maximum allowable 

speed was between 50 km/h and 80 km/h.     

5.1.4 Test Journey 

The test run was a normal ballast laying operation, starting with a full load of ballast, 

travelling to the maintenance site, dropping the ballast on the track, and returning empty 

via the same route.  Data was collected during the journey north from station A to just 

north of station B with a full load of ballast, during the ballast drop, and during the 

return journey with an empty load.  This gave opportunity to compare the ride signal 

characteristics for the wagon in both loaded and empty states over the same track 

sections at similar speeds. 

 
Figure 5-3 Journey Description from GPS Locations 
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5.1.5 Data Acquisition Equipment 

The data acquisition system was designed, manufactured, tested and installed on the test 

train by CQU technical staff.  The accelerometer devices were the same devices that 

were used in the prototype Health Card, however to interface with the National 

Instruments Data Acquisition Card, the analog output was chosen rather than the PWM 

feature.  The chip required some supporting circuitry and additional signal conditioning 

to provide a signal suitable for the PC based data acquisition system.  These circuits 

were assembled and encapsulated in resin filled enclosures as shown in Figure 5-4 

 
Figure 5-4  Accelerometer units used for data acquisistion 

The assemblies were adhered with epoxy resin to four corners of the wagon body and to 

the four side frames of the wagon.  The mounting locations and orientations of 

measurement axes were specified as part of this thesis work.   

5.1.6 Sensing Arrangement 

The data acquisition system had 16 analog input channels.  Figure 5-5 shows the 

sensing arrangement and axis directions and Table 5-1 lists the channel names.  A dual 
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axis accelerometer was placed on each corner of the wagon and on each sideframe.  All 

of the axes measured in the vertical and lateral directions.  

 

Figure 5-5 Accelerometer locations and xyz coordinate system 

Table 5-1 Channel Names 

FLBZ Front Left Body Vertical 
FLBY Front Left Body Lateral 
FLSZ Front Left Sideframe Vertical 
FLSY Front Left Sideframe Lateral 
RLBZ Rear Left Body Vertical 
RLBY Rear Left Body Lateral 
RLSZ Rear Left Sideframe Vertical 
RLSY Rear Left Sideframe Lateral 
RRBZ Rear Right Body Vertical 
RRBY Rear Right Body Lateral 
RRSZ Rear Right Sideframe Vertical 
RRSY Rear Right Sideframe Lateral 
FRBZ Front Right Body Vertical 
FRBY Front Right Body Lateral 
FRSZ Front Right Sideframe Vertical 
FRSY Front Right Sideframe Lateral 

Total:  16 Channels 
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The sensing arrangement was chosen to discern five degrees of freedom in the wagon 

body, i.e. roll, pitch, yaw angular accelerations, vertical and lateral translational 

accelerations.  (Longitudinal accelerations were considered to be outside the scope of 

this work which is only concerned with responses to track excitation.)  Measuring 

vertical and lateral accelerations at each corner of the wagon body allowed the rotations 

and translations of the body to be determined, according to Figure 5-6.  The additional 

sideframe accelerations were measured to indicate the suspension excitation 

simultaneously to the body responses.   

  
Figure 5-6  Relating corner accelerations to 5 degrees of freedom 

5.1.7 Signal Conditioning, Sampling and Storage 

The signal processing block diagram for each channel is shown in Figure 5-7.  The 

ADXL2010 includes a first order anti-aliasing filter with a corner frequency set by an 

external capacitor. The cut off frequency was set to 100Hz for the data acquisition.  

Preliminary lab testing showed that the signal required heavier attenuation to eliminate 
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high frequency content, so an additional 2nd order filter was added.  Each filtered analog 

signal was sampled at 1KHz by a National Instruments data acquisition card.  The 

sampled data was stored on a local hard drive.  The acquisition and file storage was 

handled by a Labview application running on Microsoft Windows 98 operating system. 

The data was successfully acquired and stored in files of 5000 samples, i.e. 5 seconds of 

data.   

 
Figure 5-7 - Signal Processing for Data Acquisition using PC and DAC Card 

Figure 5-8 shows an example of the simultaneous side frame and body signals collected.  

Vertical accelerations at four corners are shown.  The figure shows signals for the same 

track location collected on the onward journey loaded (left) and return journey empty 

(right).  The track section shows a transition from rough corrugation to relatively 

smooth with dipped rail joints.  The effect of the load is clearly seen in the transfer of 

excitation from the sideframes (bottom) to the body (top). 
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Figure 5-8 Wagon Body and Sideframe Accelerations in the Loaded and Empty 

Case 

5.2 OFFLINE ANALYSIS OF DATA 

It was necessary to establish a basis of comparison for the results.  Wheel force 

measurements were not possible in the scope of the research.  However, a significant 

attempt, reported in the paper by Xia and Bleakley [83], was made to estimate wheel 

forces from the sideframe and body acceleration data using an inverse modelling 

approach.  If refined adequately, this would have allowed estimated wheel contact 

forces to be aligned with the time-frequency analysis.  However, the method was not 

refined adequately within the time frame of this research.. 

An alternative approach was adopted which was to compare the results with the criteria 

for lateral and vertical accelerations specified in Australian Standards for acceptance of 

new and modified rollingstock [16][7][9]. The limits and filtering requirements are 

summarised in Table 5-2.   In the standard, measurements were to be taken from the 
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floor level of the rail wagon, as close as possible to the bogie centre.  All signals were to 

be filtered to below 10Hz. 

Table 5-2 Australian Ride Performance Standard 

Assessment Quantity  Limit 

Body vertical peak-to-peak 0.80g 

Body vertical mean peak-to-peak 0.50g 

Body lateral peak-to-peak 0.50g 

Body lateral mean peak-to-peak 0.35g  

 

The limits are specified for peak to peak and average peak to peak values.  The 

standards do not specify the time window of observation for the two values.  For this 

analysis, the peak to peak values are calculated over a 1sec sliding window, and the 

average peak to peak value is calculated over a 30sec period overlapping by 20sec.  

North American standards, Table 4-1, specify 2 second RMS values for lateral 

accelerations to detect bogie hunting.  This assessment quantity was also included in the 

data analysis. 

It should be noted here that the track used for the data acquisition was particularly 

rough, and the track was under maintenance at the time (hence, the ballast laying 

operation).  The track section was selected because it provided an interesting level of 

vehicle-track excitation.   Therefore, the acceleration levels experienced on this track 

exceeded standard limits in many locations.  This track should not be taken as an 

indication of the quality of the rail network in Queensland.  Neither should the ride 

levels be taken as an indication of the quality of ballast wagons in Queensland.   
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5.3 DATA ANALYSIS IN MATLAB™ 

Program code was developed in MATLAB™ to read the data files, pre-process the data, 

perform the analyses, and plot the results to standard A4 pages.  A file range could be 

selected and the analysis was performed on the files in overlapping windows.  This 

allows transient signals to be seen moving across the page as the viewer scrolls from 

one page to another. The MATLAB™ code for an example analysis is included in 

Appendix B.  Figure 5-9 is an example page from page 5 of CD01:\FBY(01-04 to 06-

08).pdf   

 
Figure 5-9  Example Data Analysis Page (source - CD01:\FBY(01-04 to 06-08).pdf 

page 5) 

The top line of Figure 5-9 is the acceleration signal in the axis nominated in the title.  

The signal has been band-pass filtered to remove the static and low frequency content 

below 0.5 Hz and the high frequency noise above 10Hz. The filtering is done in the 
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frequency domain by taking the FFT for the entire signal length with a Hanning 

window, clearing coefficients above 10Hz and below 0.5Hz and then taking the IFFT.  

The signal is down-sampled from 1kHz to 200Hz to match the Health Card sampling 

rate.   

The second line is the root mean square (RMS) and peak to peak (Pk-pk) accelerations 

calculated from the filtered signal.  The RMS value is calculated over a 2 second period 

in steps of 1 sample.  The Pk-pk value is calculated by subtracting the minimum value 

from the maximum value over a 1 second period also in steps of 1 sample.  

The third plot is a Haar wavelet transform calculated at diadic scales.  The Haar wavelet 

plot was produced using the function cwt (provided in [80]).  The scales were related to 

frequencies using scal2frq command.  The magnitude of the wavelet coefficients is 

displayed as a grayscale image where white is the minimum value in the plot and black 

is the maximum.  

The fourth plot is a spectrogram of the filtered signal.  In this case, the spectrogram is 

calculated using the function call specgram (provided in [84]) with a 256pt FFT, 64pt 

shift and 256pt Hanning window.  Only the 0 to 11Hz range is plotted.  Like the wavelet 

plot, the magnitude of the spectrogram is also a grayscale image where white is 

minimum and black is maximum. 

Note that in both the wavelet and the spectrogram plots, the image is scaled to the data 

in view.  The absolute magnitude of the signal is given by the Pk-pk and RMS values. 
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(The initial algorithm implementation on Health Card in Chapter 6 used 128pt shift. 

This introduces a complication which is explained in Appendix C.  For this offline 

analysis, a smaller shift of 64pts was adopted) 

5.4 RESULTS 

Each analysis was performed for the entire length of the data set.  The results files are 

included in the attached compact disk CD01.  The files are compatible with Adobe 

Reader™ which is available for download free of charge from [85].    

Table 5-3 CD01 File Names and Descriptions 

File Description 

CD01:\FBY(01-04 to 06-08).pdf Front Body Lateral Acceleration for files 01-04 to 
06-08 (entire data length) 

CD01:\FBZ(01-04 to 06-08).pdf Front Body Vertical Acceleration for files 01-04 to 
06-08 (entire data length) 

CD01:\FSY(01-04 to 06-08).pdf Front Sideframes Lateral Acceleration for files 01-
04 to 06-08 (entire data length) 

 

To view the analysis results for the entire length of the data: 

1. open the file in Adobe Reader™ 

2. set the view to “fit page” 

3. use scroll up or down to progress through the data 

Figure 5-10 can be used as an index to the data.  
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Figure 5-10  Journey Description with File Locations 

5.5 DISCUSSION OF RESULTS 

5.5.1 Detection of Bogie Hunting 

Section 2.2.1.3, discussed whether bogie lateral oscillation could be reliably detected 

from the wagon body.  The data shows consistently that periodic lateral accelerations 

measured at the bogie was accompanied by an equal or larger magnitude oscillation at 

the wagon body.  An example for the unloaded case is shown in Figure 5-11 and the 

loaded case in Figure 5-12.  This was consistent throughout the data in loaded and 

unloaded states.   
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Figure 5-11 Body Lateral (top) vs Bogie lateral (bottom) during lateral oscillation 

of an empty wagon 

 
Figure 5-12 Body Lateral (top) vs Bogie lateral (bottom) during lateral oscillation 

of a loaded wagon 
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The standards vehicle acceptance tests, defined in  [7] and [9], used accelerometers on 

the wagon body to detect instances of unacceptable bogie hunting.  Unacceptable 

hunting was defined as “Sustained lateral sinusoidal acceleration of frequency greater 

than 0.5 Hz, producing average peak accelerations at the bogie centre in excess of +/- 

0.35g over a period of at least 10 seconds.” with 10Hz filtering.  This equates to a 

lateral peak to peak value of 0.7g sustained for more than 10 seconds.   There were no 

instances in the data of bogie hunting under this definition.  However, there were many 

instances of lateral oscillation at lower levels and durations.   

For the empty wagon, there were two clear modes of lateral oscillation throughout the 

data.  One was between 1.5Hz and 2.0Hz.   The other was between 5Hz and 6Hz.  The 

higher frequency mode was not sustained for long periods.  As discussed in Section 

4.1.2, the lateral displacements for a low frequency waveform are very large compared 

to high frequency vibrations.  The lower frequency oscillation is certainly the more 

serious artefact that relates to hunting. 

Figure 5-13  is an example location where peak or RMS measures would not be 

sufficient to discern between the oscillation that relates to hunting (right) and higher 

frequency vibrations (left).  The RMS and peak levels are equivalent in each case.  

However the time frequency representation of the signal clearly reveals the difference 

between the two sections of the signals in their local spectra.    

The lower frequency hunting signal could be detected by first filtering the signal at, for 

example, 4 Hz before measuring RMS or peak levels.  However, the higher frequency 

content may still be of interest.  In the case of Figure 5-14, the high frequency 

information at the start of the oscillation indicates that the oscillation was initiated by a 
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sharp lateral irregularity.  Thus, the time location of the higher frequency, relative to the 

lower oscillation may also reveal useful information.  Pre-filtering the signal to a lower 

frequency would have removed this information.   

Filtering at a lower level may also eliminate detection of other modes of bogie hunting.  

As mentioned in Section 2.2.1.2,  there are generally two modes of lateral instability.  

One involves vehicle body oscillation, the other involves oscillation of bogie 

components at higher speeds.  The time-frequency analysis maintains the flexibility to 

detect and discern different modes of oscillation. 

 
Figure 5-13  Discerning Hunting from Other Lateral Oscillations 
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Figure 5-14 Hunting Initiated By Irregularity 

5.5.2 Detection of Severe Vehicle-Track Interaction 

There was one outstanding case of severe vehicle-track interaction that occurred on the 

data acquisition.  It is not likely that this was caused by resonant interaction because 

equally poor ride was experienced on the neighbouring test equipment car which had 

significantly different geometry and suspension characteristics.  This ‘large bounce’ site 

was used in Section 4.1.2 to introduce the need for frequency based analysis of 

acceleration signals.  Figure 4-3 compared the acceleration signal with velocity and 

displacement signals produced by integration.  

In Figure 5-15 below, the vertical acceleration at the front centre of the wagon is 

analysed.  In the spectrogram, the large ‘spot’ beginning at 16sec is the time-frequency 

feature caused by the large bounce event.  The signals at 26sec and 29sec are less severe 

events.  The RMS and Pk-pk levels show very little difference between the three 
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locations.  However, in the time-frequency plane, the events are clearly differentiated.  

The same site on the return journey with an empty wagon is shown in Figure 5-16. 

 
Figure 5-15 “Large Bounce” Site, Onward Journey, Loaded 
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Figure 5-16 “Large Bounce” Site, Return Journey, Unloaded 

5.5.3 Deficiencies in Australian and North American Standard Measures 

Some deficiencies in the North American and Australian standards were identified in 

Sections 4.1.1 and 4.1.2 and confirmed in the results of this chapter. The standard 

acceleration limits applied to vehicle acceptance in the Australian Standard and ride 

monitoring in the North American standard are specified as 0.5-10Hz filtered RMS and 

peak acceleration levels.   

Section 4.1.2 established that the lower frequency oscillations will produce small 

magnitude accelerations even with large displacements.  On the other hand, higher 

frequency oscillations will produce large magnitude acceleration signals even though 

the displacements are small.  The Australian and North American standard RMS and 

peak measures give equal weighting to all frequencies in the 0.5-10Hz range. 
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Sections 4.1.2 and 5.5.2 showed that cases of severe vertical interaction create signals in 

the lower frequencies that are hidden in the 0.5-10Hz filtered peak and RMS measures.  

The lower frequency accelerations relate to larger lateral displacements and are more 

likely to relate to wheel unloading for periods long enough to derail a wheelset.    

The results in Section 5.5.1 demonstrated that there are two predominant modes of 

lateral oscillation which contribute equally to the RMS magnitude and occur at different 

frequency bands in the 0.5-10Hz range.  The lower frequency mode is most likely to 

increase derailment risk because it increases lateral forces for longer periods, whereas 

the higher frequency mode will increase bogie component wear and wheel-rail wear.  

The lower frequency mode, hidden by the 0.5-10Hz RMS magnitude, is clearly the 

more serious behaviour. 

This means that the Australian and North American standard measures could fail to 

detect some dangerously large dynamic events. This finding suggests that the Australian 

and North American standards need to be reviewed with more careful consideration 

given to the lower frequency oscillations.  

The European Standards [27], summarised in Table 4-3, apply separate limits for Safety 

and Maintenance, with different filter cut-off frequencies specified. The Safety limits 

have lower filtering cut-off frequencies than the maintenance (behavioural) limits.  This 

approach is more consistent with the findings of this research.   

5.5.4 Detection of Loading State from Spectral Average 

The data acquisition was performed with a loaded wagon for the onward journey, and 

an empty wagon for the return journey.  It would be useful for Health Card to be able to 

detect whether the wagon is unloaded or loaded from the acceleration signals.  
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According to Table 2-4 on page 22  the resonant modes frequencies of the wagon body 

should exhibit a shift in frequency.   This should be reflected in the general overview of 

the local spectra.   

Figure 5-17 and Figure 5-18 show the analysis of the roll signal for the full wagon and 

the empty wagon respectively travelling over the same section of track in opposite 

directions at the same speed.  This analysis page allowed a longer selection of files in 

one page.  An estimate of the average frequency content was obtained by averaging 

each vertical lines of the spectrogram over the period of time covered by the analysis 

page.  The top plot is the 0-10Hz filtered signal.  The second plot is the RMS and Pk-pk 

values.  The third plot is the spectrogram with the same parameters as before.  The last 

plot is the average spectrum (solid line) and the standard deviation (dashed line). 

The first peak in the roll signal shows a change in frequency from 1.5Hz in the loaded 

state, to 2.5Hz in the unloaded state.  The change is not as clear as 1.237Hz to 5.426Hz 

predicted in Table 2-4.  The other distinction is the magnitude of the spectral peaks 

(note the scaling).  There is a tenfold increase in magnitude of the peaks relative to the 

baseline magnitude.    
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Figure 5-17  Average of Local Spectra for Loaded Wagon on Onward Journey 

 

 
Figure 5-18 Average of Local Spectra for Empty Wagon on Return Journey 
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These results demonstrate how a change in load mass is reflected in the average 

spectrum.  It follows that, if load mass is constant or known, then a change in another 

wagon parameter would also produce a detectable change in the average spectrum.  

Section 2.3.1 identified that wagon performance can be affected by a number of variable 

factors in the wagon, including wheel profile, bogie rotation resistance, and suspension 

characteristics.    

5.5.5 Comparison of Wavelet and Fourier Time-Frequency Analysis 

Fourier and wavelet analysis are compared throughout the data analysis results on 

CD01.  Although the majority of literature comparing the two techniques promoted 

wavelets over Fourier analysis, the benefits in this application are not clear.   

Fourier analysis revealed a lot of information in the 5 - 10Hz frequency region which is 

less clear in the wavelet analysis.  This can be seen in Figure 5-15.  Note that the 5 to 

10Hz region is analysed by a single wavelet scale centred around 6.2Hz.  The Fourier 

analysis divides the region into 7 bands.  The Fourier analysis would appear to be more 

useful in detecting characteristic conditions that can be traced to bogie component 

oscillation frequencies that occur in the 5 to 10Hz region. 

The wavelet analysis performed better than Fourier at locating sharp signals exactly in 

time.  This is evident in Figure 5-14 where the wavelet analysis detects the precise 

location of the sharp spike at the initiation of the damped oscillation.  This is consistent 

with the majority of the literature where wavelets have been very successful in detecting 

the exact time location of higher frequency transient signals superimposed on lower 

frequency periodic signals.  This is particularly useful in applications such as detecting 

fault transients on fixed frequency a.c. waveforms.    
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In the case of a railway wagon running on track, sharp transient vibrations occur at 

every rail joint, and are the most normal signal present.   As developed in Chapter 2, the 

behaviours that are most desirable to detect are periodic oscillations and low frequency 

vibrations.  In these cases, it is the periodic frequencies, not the sharp transients, which 

are desirable to detect.    

Fourier time-frequency analysis is adequate for the application at this stage of the 

research.  In the literature, wavelets have been applied to many established fields and 

highly controlled experiments showing notable benefits over the conventional Fourier 

time-frequency analysis.  However, understanding in these fields has been established 

using Fourier time-frequency analysis.  Health Card research has not reached the stage 

of refinement that these other fields have reached.  It therefore may be valuable to re-

introduce wavelets at a later stage for specific detection of some known specific fault 

signals. 

5.6 CONCLUSION  

A field data acquisition on an in-service ballast wagon has been presented and time-

frequency analysis has been applied to the acquired data.  STDFT spectrogram and Haar 

Wavelet analysis has been applied and compared with RMS and peak measures 

specified in relevant Australian and North American standards.  The results demonstrate 

a number of findings.   

The results prove that bogie lateral oscillation can be reliably detected from the wagon 

body.  Although no instances of the standard definition of hunting occurred during the 

data acquisition, many instances of lateral oscillation did occur.  Throughout the data, 

the magnitude of lateral oscillations was equal or larger in the body than in the bogies. 
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The results demonstrate the advantage of time frequency analysis over the standard 0.5-

10Hz filtered RMS and peak to peak levels.  There are clearly two predominant modes 

of lateral oscillation in the data, which contribute equally to the RMS magnitude.  The 

time frequency analysis clearly discerns the features of the signal based upon its 

frequency content.  Furthermore, cases of severe wagon-track interaction can be 

detected clearly in the time-frequency plane by observing the lower frequencies, where 

little distinction is seen in the 0.5 -10Hz Pk-pk and RMS measures.   

This chapter has also highlighted some deficiency in the measures specified in the 

Australian and North American standard measures which could fail to detect some 

dangerously large dynamic events. This finding suggests that the standards need to be 

reviewed with more careful consideration given to the lower frequency oscillations.  A 

strategy similar to the European Standard should be adopted where safety related limits 

are specified with lower frequency cut-offs. 

The results show that it is possible to detect loading state from the time-frequency 

information. Averaging the vertical lines of the spectrogram yielded an average spectral 

content in the signal.  The difference between a loaded wagon and an empty wagon is 

clearly in the peaks of the spectral average.  This measure could be used to detect 

whether the wagon is loaded or unloaded.  It is postulated that, if the wagon mass is 

known, changes in other wagon parameters could be detected in the same way. 

Fourier and Wavelet analysis were compared throughout the results.  The benefits of 

wavelet analysis over Fourier analysis are not clear in this application.  Fourier analysis 

revealed a lot of information in the 5 - 10Hz frequency region which is represented by a 

single coefficient in the wavelet analysis.  The wavelet analysis performed better than 
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Fourier at locating sharp signals exactly in time.  However it is not the location of sharp 

transients but rather the presence of periodic oscillations that are characteristic of lateral 

bogie instability and resonant interaction between the wagon and the track.  Fourier 

time-frequency analysis is adequate for the application at this stage of the research 

however it may be valuable to re-introduce wavelets at a later stage for detection of 

some known specific fault signals.   

This chapter has shown significant advantage for using time-frequency analysis as a 

basis for signal analysis onboard the Health Card device.  The next chapter proves that 

STDFT spectrogram analysis is feasible given the constraints of the Health Card device 

by implementing it on the prototype. 
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6 Implementing Short Term Fourier Analysis on Health 
Card 

A signal analysis algorithm was required for the prototype Health Card system to run 

for initial testing.  This section describes the online algorithm developed and specified 

as part of this research.  The algorithm description is given in the same level of detail 

specified to the device programmer.  

6.1 PURPOSE 

The purpose of this algorithm was to allow four Health Cards to run in a multi wagon 

network for an initial proof of concept test and ongoing testing of the capabilities of the 

integrated system.    A secondary purpose was to verify that STDFT time-frequency 

analysis was feasible given the processing constraints of the prototype system. 

6.2 REQUIREMENTS 

The algorithm was required to measure six degrees of freedom from the eight 

accelerometer axes and provide single values to represent motion in each degree of 

freedom.  The network protocol, also under development, allowed for a maximum of 

one 16bit value per degree of freedom to be transmitted approximately every half 

second.  

6.3 IMPLEMENTATION OF STDFT ANALYSIS 

The algorithm read the acceleration signals taken from the wagon body and related them 

into 6 degrees of freedom (DOF): Roll, Pitch, Yaw, Vertical, Lateral, and Longitudinal, 

according to Figure 3-5 in Section 3.2.4.  A 256pt FFT with 128pt shift was calculated 

on each of the 6 DOF signals every 640msec. 
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The PWM signals were measured using a capture and compare port to count the 

duration of the pulses.  An interrupt driven routine sampled the 8 signals and refreshed 8 

input buffers every 5msec.  Once a sweep of the input channels was complete, the data 

was placed into eight 256 x 16 bit cyclic buffers, one buffer per channel.  Each buffer 

was organised into two blocks of 128 16 bit values.  The current location in each buffer 

was maintained by an 8 bit pointer.  When the buffer pointer reached 128, or rolled over 

to 0, the last block of 128 values to be written became ready to process.  At a sampling 

rate of 200 s/s, the blocks became ready to process every 640ms.   

 
Figure 6-1  Raw Data Buffers – 8 Channels 

When each block of 128 16 bit values became ready to process, the following tasks 

were executed: 

The quasistatic component was estimated by an accumulated average.  Each block of 

128 values was averaged to produce x 128.  The results of the current average and the 

previous accumulated value were averaged to obtain the current value. 

x accumulated = ( x  accumulated + x 128) / 2 
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where x 128 = ( ∑
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(The divide by 2 and divide by 128 were done efficiently by right-shifting the 

binary result). 

7 blocks were used to calculate accelerations in 6 degrees of freedom (DOF): Roll, 

Pitch, Yaw, Vertical, Lateral, and Longitudinal according to Figure 3-5 in Section 3.2.4. 

The scaling factors w, l and d were ignored here.  These factors may not be powers of 

two, and thus could not be divided efficiently.  Rather than perform an integer divide on 

every sample, it was much more efficient to scale the final detection thresholds in the 

master device.   The quasistatic values were also removed from the signals at this stage. 

ROLL  = FLZ – average(FLZ) – FRZ + average(FRZ) 

PITCH =  FLZ – average(FLZ) –  RLZ + average(RLZ) 

YAW  =  FRY – average(FRY) – RLY + average(RLY) 

VERT  =  [FRZ – average(FRZ) + RLZ – average(RLZ)]/2 

LAT  =  [FRZ – average(FRZ) + RLZ – average(RLZ)]/2 

LONG = FLX – average(FLX) 

The results were placed in six 256 x 16bit buffers which are organised into two blocks 

of 128 values, such that the oldest block was always overwritten.   
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Once the pointer reached 128 or rolled over to 0, the six 256 value blocks were copied 

into six 256 x 32 bit FFT buffers.  During the copy operation, the blocks of 128 were re-

arranged into time sequential order.  In the FFT buffers the upper 16 bits contained the 

input values and the lower 16 bits were set to zero.  The FFT function was then called 

for each of the 6 blocks.  The FFT function read the input from the buffer, performed 

the FFT with a Hanning window and wrote the result back into the same location.  The 

upper 16 bits became the real component of the result and the lower 16 bits became the 

imaginary component.  The Power Spectrum function was then called for each buffer.  

The Power Spectrum function took the 16bit complex values and returned 32bit real 

values in their place.   
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After the FFT and Power Spectrum functions executed, each buffer contained the 256 pt 

|FFT|2 of one DOF as 32bit values, which constitutes one vertical line of the 

spectrogram of the signal. 

6.4 OUTPUT VARIABLE 

The network protocol allowed a maximum of one 16bit value per degree of freedom 

every half second.  To achieve the required data reduction with STDFT analysis, the 

fully developed Health Card algorithm would require a pattern recognition stage as 

shown in Figure 6-2 below.   

 
Figure 6-2  Concept of Time Frequency Analysis with Pattern Recognition to 
Achieve Health Card Requirements 

Automatic pattern recognition is an area of research which is outside the scope of this 

thesis. However, some literature review was undertaken and a recommendation for 

automated detection of time-frequency signatures is detailed in Section 6.7.     

For the purpose of testing the prototype system, an output variable comparable to 

existing standard limits was acceptable.  The standard limits identified in Section 4.1.1 

are specified in terms of peak and RMS values.  Peak values cannot be obtained directly 
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from the frequency domain coefficients without applying an inverse FFT; however 

RMS values can be obtained directly from the FFT coefficients.  

According to Parseval’s theorem detailed in [28], the mean square (MS) value of the 

time domain signal can be calculated in the frequency domain by eq. 6-1 where the right 

hand side is known as the spectral energy 
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eq. 6-1 

The RMS value is simply the square root of the MS value.  The MS value for the 0.5-

10Hz component of the signal can be calculated by summing the coefficients that cover 

that frequency range.  (Note: the result is scaled by the MS value of the applied window 

function.) 

The output variable chosen for this algorithm was the right hand side of eq. 6-1 for 0.5-

10Hz region of the signal. The scaling and square-root operation to calculate the RMS 

was left for the master system to save processing power on Health Card.   

The algorithm first related the acceleration signals into 6 degrees of freedom (DOF): 

Roll, Pitch, Yaw, Vertical, Lateral, and Longitudinal, using the linear relationships 

identified in Figure 3-5.  A 256pt FFT with 128pt shift was then calculated on each of 

the six degree of freedom signals every 640msec.  A mean-square energy level was 

calculated on each local spectra over the 0.5-10Hz range.  The value for each DOF was 

transmitted via the network to the master device every 640msec.  Figure 6-3 is a 

graphical representation of the process for one degree of freedom, which in this case is 
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roll acceleration.  The output variable was then calculated by adding first 13 coefficients 

to get the 0.5-10Hz energy value.   

 
Figure 6-3  Overview of Algorithm for One Variable (roll) 

Calculating the mean square or root mean square value from the FFT coefficients means 

that the signal can be assessed or adjusted in the frequency domain.  Figure 6-4 is an 

example output of the equivalent algorithm applied offline to the body lateral signal in 

MATLAB.  Here the frequency spectrum is summed over the 0.5-10Hz range and the 

variable follows the 0.5 -10Hz RMS.  
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Figure 6-4 Algorithm Output Variable (0-10Hz) Lateral 

Any weighting function can be chosen and multiplied with the local spectra.  Narrower 

frequency bands can also be targeted, like those of Table 4-3 specified in European 

bogie wagon ride standards.  Figure 6-5 is the same signal with the FFT coefficients 

summed over the 0-4Hz range. Similarly in Figure 6-7 the large bounce event that was 

analysed in Section 5.5.2 is clearly highlighted by limiting the energy to the 0-4Hz 

range.  

Pk-pk, RMS, and Algorithm Output Variable

Haar wavelet scales 16 32 64 128 256 512 
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Figure 6-5 Algorithm Output Variable (0-5Hz) Lateral 

 
Figure 6-6 Algorithm Output Variable (0-10Hz) Vertical 

Pk-pk, RMS, and Algorithm Output Variable 

Haar wavelet scales 16 32 64 128 256 512 

Pk-pk, RMS, and Algorithm Output Variable 

Haar wavelet scales 16 32 64 128 256 512 
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Figure 6-7 Algorithm Output Variable (0-4Hz) Vertical 

Section 4.1.2 established that acceleration is related to velocity by 1/ω and displacement 

by 1/ω2.   It is therefore possible to multiply the local spectra by 1/ω or 1/ω2 before 

summing the coefficients will give respective velocity signal energy or displacement 

signal energy.   Taking the square root and dividing by a known scale factor for the 

window function will give the RMS values. 

6.5 DISPLAY METHOD FOR THE MASTER DEVICE 

The master device was emulated on a laptop computer.  The program read data packets 

from the serial port which was linked to the Health Cards via a low power radio link.  

The program assembled the data into a scrolling display that showed the roll, pitch, 

yaw, bounce, lateral and longitudinal values as colour-scaled pixels.    

Pk-pk, RMS, and Algorithm Output Variable 

Haar wavelet scales 16 32 64 128 256 512 
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6.6 DEMONSTRATION IN LABORATORY  

The analysis code failed to run for the initial field test due to a compilation problem, 

therefore the working system could only be demonstrated in the laboratory. (Further 

field testing of algorithms was intended; however field tests were subject to several 

external factors.  These included access to test wagons for installation of equipment, and 

the availability of a test car to carry personnel and test equipment during the test.   Due 

to scheduling constraints and high rollingstock demand, further field tests did not 

eventuate within the time-frame of this research.) 

The algorithm was tested by mounting the Health Card hardware on a coal wagon in the 

heavy testing laboratory at CQU.  Figure 6-8 shows one of the three remote 

accelerometer units mounted which were mounted on the corners of the wagon.  Figure 

6-9 shows the battery powered Health Card unit wired to the remote units on the wagon.  

A radio transmitter in one of the accelerometer units was transmitting signal to the 

laptop computer on the bench.  (Note: The system beside the laptop computer is the 

field data acquisition described in Chapter 5 and was not involved in this test.) 



115 

 
Figure 6-8:  Health Card Accelerometer and Transmitter Mounted on a Wagon in 

the Laboratory 

 
Figure 6-9  Master System on Laptop Receiving Health Card Data via Radio Link 
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The display on the laptop computer was designed for the in-train testing of four 

consecutive Health Cards to show the relative dynamics of the wagons.  Figure 6-10 is a 

screen-shot of the display generated by manually exciting the roll mode on the wagon in 

the laboratory with a human body weight only.  Approximately one minute of data is 

shown, as the data flows from right to left.  The row numbers 1,2,3 & 4 are the outputs 

from the four wagons (only one wagon was active in the laboratory test).  The major 

rows show the output variables for roll, pitch, yaw, vertical, lateral, and longitudinal 

modes respectively.  

 
Figure 6-10  Master Display Showing (0.5-10Hz) Energy in Each DOF. (roll action 

excited, one wagon only) 

The colours on the display gave a visual sense of the relative magnitudes occurring in 

each mode.  The numbers alongside the bands are the absolute minimum and absolute 

maximum values over the period covered by the display.   Figure 6-11 is a fabricated 

Wagon Number Absolute Minimum 
Absolute Maximum 

Roll Event 



117 

output illustrating an expected result had the algorithm been working for the in-train 

test.  Four consecutive wagons of the same type with equivalent suspension 

characteristics should experience the similar excitation, resulting in a diagonal 

correlation.  Wagons with different characteristics would exhibit less correlation.  The 

angle of the diagonal away from vertical should be proportional to the train speed.   

 
Figure 6-11  Expected Result for Four Wagons with Equal Characteristics 

(fabricated result) 

This visual representation was designed to allow test engineers to see what was 

happening during the initial test.  For a working automatic system, recognition of 

abnormal wagons could be automated by performing a correlation on the output 

streams. 

 

6.7 RECOMMENDATION FOR AUTOMATED DETECTION OF TIME-

FREQUENCY SIGNATURES 

A range of literature was reviewed which presented the use of time-frequency analysis, 

including wavelet analysis, as the feature extraction stage of artificial neural network 

(ANN) based detection systems, c.f. Figure 6-2.  Many of these were applied to  

electrical power system fault detection.  It was consistent throughout the literature that 

the techniques were applied to relatively simple, well controlled experiments, with 

known inputs and outputs.  It was very difficult to find literature that detailed how to 

implement the schemes that they presented.  A refreshing exception was a text chapter 
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on detection and classification by ANNs and time-frequency distributions [86].  The 

chapter identified some basic requirements for extraction of features from transient 

signals for input to a neural network.  These are outlined here as follows. 

The feature extraction stage should produce a representation of the signal which: 

1. reveals the significant characteristics of the signal 

2. discriminates well between different signals 

3. remains the same as the signal moves across the window of observation 

An extension to the FFT spectrogram was presented which fulfilled these requirements.  

The method was to first construct the spectrogram, then take the FFT of each frequency 

band in the spectrogram with respect to time and return the result back into the same 

horizontal line as in the original spectrogram.  The result is a representation that is 

dependant upon the frequency content, and duration of the time-frequency feature, but 

does not shift as time “rolls on”.  It only changes as features enter or leaves the 

observation window of the complete spectrogram.   

Figure 6-12 demonstrates the technique applied to some offline data. The figure is 

divided into five rows of sequential data with 1/3rd shift in time from one row to the 

next.  The top image on each row is the spectrogram.  The lower image on each row is 

the result of the process described above. The time-frequency features can be seen 

moving across the window of observation in the spectrogram.  Note that the lower 

image reflects the frequency content of the signal and the duration of that frequency 

content in the signature.  The representation does not change as the feature “slides” 

through the window. 
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When applied as a feature extraction stage for an ANN classification system, the 

method was reported to achieve very good results with minimal training.  Furthermore, 

the feature extraction stage used FFT algorithms to achieve a “very fast” 

implementation, making it suitable for an embedded application such as Health Card.  

This extension of the time-frequency analysis technique presents a promising direction 

for ongoing research into detection of unique vibration signatures from the acceleration 

signals.     
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Figure 6-12 Spectrogram of Moving Signal (upper) and FFT of the Spectrogram 

Rows (lower) 
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6.8 CONCLUSION 

A signal analysis algorithm was required for the prototype Health Card system to run 

for initial testing of the hardware and device network.  This chapter has described the 

online algorithm that was developed by the researcher to meet the requirements of the 

development project, and to verify that STDFT time-frequency analysis is feasible 

within the constraints of the device.   The algorithm has produced an output comparable 

with existing standards, and which also provided the flexibility to select different 

frequency ranges, or apply a weighting function based upon knowledge of the target 

behaviour.    

Although the time-frequency information was not able to be transmitted to the master 

device for display, the results proved that the online time-frequency analysis was 

running and producing the expected output.  This verified that the FFT based time-

frequency analysis is viable under the processing constraints of the prototype device, 

and could be used as a basis for signal analysis onboard the fully automated device.  A 

significant recommendation has been made for the use of FFT analysis as a feature 

extraction stage of an ANN signal classification system. 
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7 Conclusion 
This research was required to examine the application of time-frequency techniques to 

the online analysis of wagon body acceleration signals.   The application utilised a novel 

wagon and track health monitoring system that would measure accelerations at the 

wagon body of every wagon in the fleet.   A prototype device was developed, and 

algorithms constructed for that device to operate for field testing and ongoing 

development. 

The research outlined in this thesis has laid a foundation that did not exist before.  A 

substantial review of the relevant literature resulted in an understanding of the 

application which will enable future development of the concept system.  As part of this 

review it was important to determine the key phenomena that need to be detected by the 

monitoring system. Lateral bogie oscillation and resonant wagon-track interaction were 

identified as key indicators of the performance of the wagon-track system.  This thesis 

has also identified existing ride monitoring systems and standards and presented these 

for comparison with the proposed “Health Card” system.   

The signal characteristics for this application are quite unique and an understanding of 

the characteristics of the signals has been developed as part of this research. The theory 

of time-frequency analysis has been introduced as a necessary set of tools in the context 

of the application. Two major forms of time-frequency analysis are presented and 

compared throughout the thesis to determine the most appropriate approach for this 

application.  The Fourier spectrogram and Wavelet analysis are applied to field data and 

the results demonstrate that Fourier analysis is most suitable for detecting the behaviour 
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of interest.   Wavelet analysis may become more useful as Health Card research matures 

and specific event signatures are identified that require its advantages. 

Time-frequency analysis was also compared with RMS and peak measures specified in 

relevant standards.  The Fourier spectrogram and Wavelet analysis clearly resolved 

signatures of lateral bogie oscillation and severe wagon-track interaction, both of which 

were concealed in the RMS and peak measurements.  Results also showed a strong 

possibility that Health Card algorithms could detect a change in wagon parameters from 

the time-average of the spectrogram.  The results demonstrated the merits of using time-

frequency analysis as a basis for online signal analysis on Health Card.  They also 

highlighted a potential limitation in the Australian and North American ride monitoring 

standards that should be addressed. 

Implementation of Fourier spectrogram analysis has been demonstrated on the prototype 

device. The algorithm implemented on the device fulfils the technical requirements of 

the prototype system, allowing it to run for proof of concept and ongoing research into 

the capabilities of the integrated system of devices. The output produced is comparable 

to standard RMS and peak to peak levels, but with added flexibility to weight the signal 

based upon frequency content.  A visual display output has been implemented that 

allows system development engineers to view the relative motions of consecutive 

wagons. Although time frequency information was not transmitted as an output, the 

implementation proved that the device can support Fourier time-frequency analysis 

across several concurrent channels.  A variant of Fourier time-frequency analysis has 

been shown in literature to be highly effective as a feature extraction stage to an 
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Artificial Neural Network and is recommended as a promising direction for future 

research. 

Significant contributions were made as part of this research towards the development of 

the Health Card system.  These contributions include: 

1. strategic placement of four dual axis accelerometers for the Health Card 

prototype to capture six degrees of freedom in the vehicle body 

2. determination of requirements for signal filtering and data sampling within the 

prototype device 

3. conversion of raw data into measurement of six modes of vehicle body motion 

including longitudinal, vertical, lateral, pitch, yaw and roll 

4. a time frequency analysis algorithm reporting energy levels in each mode while 

providing a means for frequency dependent detection 

5. several informed recommendations for ongoing research and future algorithms 

for the Health Card device 

The knowledge and tools developed in this thesis form a foundation that did not exist at 

the outset of this research.  It is the hope of the researcher is that this foundation will be 

used to develop the “Health Card” concept into a working reality.  
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Appendix A Simulation Model Parameters 
Table A-1 VAMPIRE™ Model Parameters for Simulations and Modal Analysis 

BogSemiSpac 5.18 m Bogie semi-spacing 
WhlSemiSpac 0.838 m Wheelset half axle spacing 
YSemSpc 0.8 m Primary suspension lateral semi-spacing 
WheelRad 0.425 m Wheel radius 
Sdbrsemspac 0.616 m Side support semi spacing 
HalfCar 7.41 m Half length of a car body 
CoefWedge 0.3 Wedge Wedge static friction coefficient 
Stat 16 kN Static load on wedge friction surface  
Bodymass 66.1 Mg Carbody mass (loaded) 
 8.1 Mg Carbody mass (unloaded) 
Bodyroll 85.576 Mgm2 Carbody roll inertia (loaded) 
 10.576 Mgm2 Carbody roll inertia (unloaded) 
Bodypitch 647.182 Mgm2 Carbody pitch inertia (loaded) 
 79.307 Mgm2 Carbody pitch inertia (unloaded) 
Bodyyaw 652.982 Mgm2 Carbody yaw inertia (loaded) 
 80.017 Mgm2 Carbody yaw inertia (unloaded) 
Sidemass 0.447 Mg Bogie side frame mass 
Sideroll 0.101 Mgm2 Bogie side frame roll inertia 
Sidepitch 0.1156 Mgm2 Bogie side frame pitch inertia 
Sideyaw 0.1156 Mgm2 Bogie side frame yaw inertia 
Bolstmass 0.465 Mg Bogie bolster mass 
Bolstroll 0.175 Mgm2 Bogie bolster roll inertia 
Bolstpitch 0.115 Mgm2 Bogie bolster pitch inertia 
Bolstyaw 0.176 Mgm2 Bogie bolster yaw inertia 
Wheelsetmass 1.12 Mg Wheelset mass 
Wheelsetroll 0.4201 Mgm2 Wheelset roll and yaw inertia 
Wheelsetpitch 0.1 Mgm2 Wheelset roll and yaw inertia 
CoefAdapt 0.3 Friction Friction coefficient of adapter 
StatAdapt 84.388 kN Static load on adapter  
CentPlatePL 81.056 kN Static pre-load on centre plate 
PinSP 6.397 m Coupler distance in x direction 
CpHgt 0.785 m Coupler distance in z-direction 
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Appendix B Matlab Code 

B.1 EXAMPLE DATA ANALYSIS FORM – FBY 01-04 TO 06-08 

This code requires MATLAB Signal Processing Toolbox™ and MATLAB Wavelet 

Toolbox™.   The file handling code is specific to the file format and directory structure 

of the source files (not included).  For clarity, the data path through the code is 

highlighted with bold font.  

B.1.1 Code 

function main() 
% Author:  Steven Bleakley 
 
 
set(0, 'DefaultFigureVisible', 'off'); 
 
% clear all existing variables in memory 
 
clear all 
 
nfiles = 3 % number of data files to include in one figure 
 
 
% file range 
firstfile.path = 'T:\CQU\MEng\Data\2003 06 27 Field Data\03-27-6.001\' 
firstfile.name = '03-27-6.004' 
lastfile.path =  'T:\CQU\MEng\Data\2003 06 27 Field Data\03-27-6.006\' 
lastfile.name = '03-27-6.008' 
 
% initialise file counters 
startfile = firstfile; % initialise 
stopfile = firstfile; 
 
% construct name for output file 
filename = [firstfile.path((length(firstfile.path)-2):(length(firstfile.path)-1)),'-
',firstfile.name(10:11),'-', lastfile.path((length(lastfile.path)-
2):(length(lastfile.path)-1)),'-',lastfile.name(10:11)] 
 
 
% loop through files reading nfiles of data into local variables and plotting the  
% results to postscript pages 
while 
~isequal(fullfile(stopfile.path,stopfile.name),fullfile(lastfile.path,lastfile.name)) 
     
    [data,stopfile] = loaddata(startfile,nfiles,lastfile); 
     
     FLBZ = (data(:,2)-2.5);      % Front Left  Body        Z 
 FLSZ = (-(data(:,3)-2.5));   % Front Left  Sideframe   Z 
 RLBZ = (data(:,6)-2.5);      % Rear  Left  Body        Z 
 RLSZ = (-(data(:,7)-2.5));   % Rear  Left  Sideframe   Z 
 RRBZ = (data(:,10)-2.5);     % Rear  Right Body        Z 
 RRSZ = (-(data(:,11)-2.5));  % Rear  Right Sideframe   Z 
 FRBZ = (data(:,14)-2.5);     % Front Right Body        Z 
 FRSZ = (-(data(:,15)-2.5));  % Front Right Sideframe   Z 
  
 FLBY = (-(data(:,1)-2.5));   % Front Left  Body        Y 
 FLSY = (-(data(:,4)-2.5));   % Front Left  Sideframe   Y 
 RLBY = (-(data(:,5)-2.5));   % Rear  Left  Body        Y 
 RLSY = (-(data(:,8)-2.5));   % Rear  Left  Sideframe   Y 
 RRBY = (-(data(:,9)-2.5));   % Rear  Right Body        Y 
 RRSY = (data(:,12)-2.5);     % Rear  Right Sideframe   Y 
 FRBY = (-(data(:,13)-2.5));  % Front Right Body        Y 
 FRSY = (data(:,16)-2.5);     % Front Right Sideframe   Y 
      
 % CONVERT BODY DATA INTO 5 DOF 
  
 ROLL    = (FRBZ - FLBZ);           % Body Roll 
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 PITCH   = (FRBZ - RRBZ);           % Body Pitch 
 YAW     = (FLBY - RRBY);           % Body Yaw 
 VERT    = (FLBZ + RRBZ)/2;         % Body Vertical 
 LAT     = (RRBY + FLBY)/2;         % Body Lateral 
     
    % CONVERT DATA TO STANDARD LOCATIONS 
     
    FBZ     = (FLBZ + FRBZ)/2;         % Front Body Centre Vertical 
    FBY     = (FLBY + FRBY)/2;         % Front Body Centre Lateral 
    RBZ     = (RLBZ + RRBZ)/2;         % Rear Body Centre Vertical 
    RBY     = (RLBY + RRBY)/2;         % Rear Body Centre Lateral 
     
    FSY     = (FLSY + FRSY)/2;         % Front Bogie Centre Lateral 
    RSY     = (RLSY + RRSY)/2;         % Rear Bogie Centre Lateral 
     
    % create text for upper right hand corner of page 
    titletext = [... 
        'Files: ',... 
        startfile.path((length(startfile.path)-2):(length(startfile.path)-1)),'-
',startfile.name(10:11),... 
        ' to ',... 
        stopfile.path((length(stopfile.path)-2):(length(stopfile.path)-1)),'-
',stopfile.name(10:11),... 
        ] 
     
    % create the data analysis page using the nominated data 
    createfigure(titletext, FBY); 
     
    % append the figure to the output file (postscript) 
    print(gcf, '-dpsc', '-append', filename); 
 
    % close the figure 
    close(gcf); 
    startfile = incfile(startfile); 
 
end 
 
%%% end of mainloop %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [data, stopfile] = loaddata(startfile,nfiles,lastfile) 
 
% Load nfiles number of data files starting at startfiles 
% Terminate if lastfile is found 
% Return data in data and last-file-read in stopfile  
  
d = zeros(1,16); 
d(1,:) = []; 
f = startfile; 
 
for i = 1:nfiles 
    f 
    temp = DLMREAD(fullfile(f.path, f.name),'\t','E2..T15003'); 
    temp(5001,:) = [];        % extract GPS marks and delete line from data 
    temp(10001,:) = [];        
    d = [d; temp];            % append data 
    if isequal(fullfile(f.path,f.name),fullfile(lastfile.path,lastfile.name))  

% terminate after last file read 
        stopfile = f; 
        break 
    end 
    if i ~= nfiles 
        f = incfile(f);     % increment file 
    end 
end 
stopfile = f; 
data = d; 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function createfigure(figuretitle, DAT) 
 
% Create the figure using the data in DAT  
% place the text in figuretitle on the top right corner of the page 
 
 
% create figure 
figure1 = figure('PaperUnits', 'normalized',... 
    'PaperType', 'A4',... 
    'PaperOrientation', 'landscape',... 
    'PaperPosition', [0.025 0.025 0.975 0.95]); 
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% place text in top right corner 
set(gcf, 'DefaultAxesBox', 'on'); 
annotation1 = annotation(... 
  figure1,'textbox',... 
  'Position',[0.1 0.9702 0.85 0.02841],... 
  'FontName','Arial',... 
  'FontSize',12,...   
  'LineStyle', 'none', ... 
  'HorizontalAlignment', 'right', ... 
  'FitHeightToText','off',... 
  'String',figuretitle); 
 
 
% scale signal from 0.1/g to 1/g 
DAT = DAT*10; 
 
% Filter and downsample signal 
fp = 0.5;   %Hz 
fc = 10;    %Hz 
fs = 1000;  %S/s 
DAT = fftbpfilt(DAT,fp,fc,fs); 
DAT = downsample(DAT,5); 
fs = 200; 
 
% create time vector 
t = [1:length(DAT)]*1/fs; 
 
% set up view window range 
trange = [max(t)/6 5*max(t)/6]; 
nrange = trange*fs; 
 
% Create plot1 
% plot filtered signal 
 
axes1 = axes('Position',[0.1 0.75 0.85 0.19],... 
  'FontName','Arial',... 
  'FontSize',12,... 
  'XGrid','on',... 
  'XMinorTick','on',... 
  'YGrid','on',... 
  'YTick',[-1:0.25:1],... 
  'YTickLabel',{'','','-0.5','','0','','0.5','',''},... 
  'XTickLabel',{},... 
  'Parent',figure1); 
axis(axes1,[trange -1 1]);  % |-[- --- -]-|); 
grid on 
hold all 
title('Front Body Lateral (0.5-10Hz filtered)'); 
ylabel('FBY(g)'); 
plot1 = plot(t,DAT,'Color','k','Parent',axes1); 
 
% Create plot 2a 
% Plot sliding RMS values 
 
axes2 = axes('Position',[0.1 0.52 0.85 0.19],... 
  'XAxisLocation','top',... 
  'YAxisLocation','right',... 
  'FontName','Arial',... 
  'FontSize',12,... 
  'XGrid','on',... 
  'XMinorTick','on',... 
  'YGrid','on',... 
  'YTick',[0:0.05:0.25],... 
  'YTickLabel',{'','','0.1','','0.2',''},... 
  'XTickLabel',{},... 
  'XColor','m',... 
  'YColor','m',... 
  'Parent',figure1); 
axis(axes2,[trange 0 0.25]); 
grid on 
hold all 
xlabel('Pk-pk and RMS','Color','k'); 
ylabel('2sec RMS(g)','Color','m'); 
plot2 = plot(t, rms(DAT,256,1),'Color','m','Parent',axes2); 
 
 
% Create plot 2b 
% plot sliding Peak to Peak 
 
axes2b = axes('Position',get(axes2,'Position'),... 
   'Color','none',... 
   'XColor','k',... 
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   'YColor','k',... 
   'FontName','Arial',... 
   'FontSize',12,... 
   'XGrid','on',... 
   'XMinorTick','on',... 
   'YGrid','on',... 
   'YTick',[0:0.3:1.5],... 
   'YTickLabel',{'','','0.6','','1.2',''},... 
   'XTickLabel',{},... 
   'Parent',figure1); 
axis(axes2b,[trange 0 1.5]); 
grid on 
hold all 
ylabel('1sec PK-PK(g)','Color', 'k'); 
plot2b = plot(t, pk2pk(DAT,200,1),'Color','k','Parent',axes2b); 
 
 
% Create plot 3 
% Plot wavelet coefficients 
 
axes3 = axes('Position',[0.1 0.29 0.85 0.19],... 
    'FontName','Arial',... 
    'FontSize',12,... 
    'Parent', figure1,... 
    'Layer', 'top',... 
    'XLim', nrange,... 
    'YLim', [1 6]); 
hold all 
 
 
%   haar    freq 
%   scale   (Hz) 
%==================== 
%   16      12.4514     
%   32      6.2257     
%   64      3.1128 
%   128     1.5564     
%   256     0.7782 
%   512     0.3891 
 
 
scales = [16 32 64 128 256 512]; 
C = cwt(DAT,scales,'haar','absglb'); 
axis ij 
set(axes3,'YTickLabel',{'12.5','6.2','3.1','1.6','0.8','0.4'},'XTickLabel',{}); 
ylabel('freq(Hz)'); 
xlabel(''); 
title('Haar wavelet for scales: 16 32 64 128 256 512') 
map = ones(240,3) - gray; 
colormap(map); 
 
 
% Create plot 4 
% Plot Spectrogram 
 
axes4 = axes('Position',[0.1 0.06 0.85 0.19],... 
  'FontName','Arial',... 
  'FontSize',12,... 
  'XGrid','on',... 
  'XMinorTick','on',... 
  'YGrid','on',... 
  'YMinorTick','on',... 
  'Box', 'on',... 
  'Layer', 'top',... 
  'Parent',figure1); 
grid on 
hold all 
ylabel('f(Hz)'); 
 
NFFT = 256; 
[A,F,T] = specgram(DAT,NFFT,fs,NFFT,192); 
T(1:3) = []; 
plot4 = imagesc(T,F,A); 
axis(axes4,[trange 0 11]); 
axis xy 
ylabel('freq(Hz)'); 
title('256pt FFT, 64pt shift, Hanning window'); 
xlabel('time(sec)'); 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function sigout = fftbpfilt(sigin,fp,fc,fs) 
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% FFT band pass filter 
% lower cut-off = fp 
% upper cut-off = fc 
% sampling rate = fs 
 
sx = fft(sigin); 
len = length(sx); 
sx((len*fc/fs):(len*(1-fc/fs)))=0; 
sx(1:fix(len*fp/fs))=0; 
sx(fix(len*(1-fp/fs)):len)=0; 
sigout = real(ifft(sx)); 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function sigout = rms(sigin,window,step) 
 
% Calculate the RMS value of SIGIN  
% over WINDOW points  
% sliding in steps of STEP points 
 
MS = zeros(1,length(sigin)); 
for i = 1+window/2:step:(length(sigin)-window/2) 
    MS(i) = sum(sigin((i-window/2):(i+window/2)).^2)/window; 
end 
sigout = sqrt(MS); 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function sigout = pk2pk(sigin,window,step) 
 
% WINDOW in points 
% STEP in points 
 
PK2PK = zeros(1,length(sigin)); 
for i = 1+window/2:step:(length(sigin)-window/2) 
    PK2PK(i) = max(sigin((i-window/2):(i+window/2))) - min(sigin((i-
window/2):(i+window/2))); 
end 
sigout = PK2PK; 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function newfile = incfile(oldfile) 
 
% Increment the file name by 1 
% When filenumber reaches 99, clear to 00 and increment the directory by 1 
 
filepath = oldfile.path; 
filename = oldfile.name; 
filenum = str2double(filename((length(filename)-4):length(filename)));  % get file 
number 
filenum = filenum + 0.001;                  % inc file number 
if filenum > 6.099 
    filenum = 6.0; 
    filepath = incpath(filepath);  
end 
filenumstr = num2str(filenum,'%5.3f')  ;            
filename((length(filename)-4):length(filename))= filenumstr; 
% Check that new file exists 
if ~isequal(exist(fullfile(filepath,filename)), 2)  
    error('File not found.') 
end 
newfile.name = filename; 
newfile.path = filepath; 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function newpath = incpath(oldpath) 
 
%   NEWPATH = INCPATH(OLDPATH) 
%   eg '03-27-6.002/' -> '03-27-6.003/' 
 
path = oldpath; 
pathnum = str2double(path((length(path)-5):(length(path)-1)));  % get path number 
pathnum = pathnum + 0.001;                  % inc path number 
pathnumstr = num2str(pathnum,'%5.3f');  % field = 5, precision = 3        
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path((length(path)-5):(length(path)-1)) = pathnumstr; 
newpath = path; 
 
%%% end of function %%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function newpath = decpath(oldpath) 
 
%   NEWPATH = INCPATH(OLDPATH) 
%   eg '03-27-6.002/' -> '03-27-6.001/' 
 
path = oldpath; 
pathnum = str2double(path((length(path)-5):(length(path)-1)));  % get path number 
pathnum = pathnum - 0.001;                  % inc path number 
pathnumstr = num2str(pathnum,'%5.3f');  % field = 5, precision = 3        
path((length(path)-5):(length(path)-1)) = pathnumstr; 
newpath = path; 
 
%%% end of function %%% 
 
 
%%% end of code %%% 

 

B.1.2 Sample Data Plot 

 

 
Figure B-1  Example Data Analysis Page (CD01:\FBY 01-04 to 06-08.pdf, page 5) 
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Appendix C Known Issue Health Card Algorithm 
An issue with the algorithm implemented on the prototype Health Card for the intial test 

was identified during subsequent offline time-frequency analysis of field data.  The 

algorithm applied a 256pt FFT with 128pt shift and a Hanning window.  In Figure C-2, 

spectrograms (1), and (3) have the same configuration.  As Figure C-1 illustrates, a 

transient signal moving from one time location to another aligns differently with the 

local FFT windows.  If the transient aligns with the centre of the window, all of its 

spectral content will appear in the FFT of the signal multiplied by that window.  

Alternately, if the transient signal lies at the boundary between two windows, the 

spectral content is shared between the two.   

 
Figure C-1Windowing and Shift 

Figure C-2 demonstrates the effect.  The local spectrum of the transient signal in (1) at 

24sec is shared over two windows.  When the signal is shifted to 8sec in (3),  the 

frequency information is contained within a single window.   

More consistent results were achieved by increasing the overlap of the windows.  

Spectrograms (2) and (4) were calculated with 200pt overlap (i.e. 56pt shift).  There is 

negligible difference between the spectra of the time shifted transient.    

window 

t 

shift 

transient
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Figure C-2  Comparison of Adequate and Inadequate FFT Overlap 

Reducing the shift requires the FFT to be calculated more often, which would cause 

`additional load on the processing resources. For Health Card, the trade-off between 

time shift invariance and processing load can be managed as the code is optimised.   For 

the offline analysis, a 64pt shift was used.  This could be implemented on Health Card 

using blocks of 64pts instead of 128. 
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(3)
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