3. Theory of Contact-Impact

3.1. Introduction

This chapter reports the mechanics of contact &edthieory of the finite element
method. Both the classical and the computationabries of contact mechanics are
reviewed first, followed by the solution methods 8EM. The techniques of FE

modelling of contact impact are also presented.

3.2. Brief Review of Mechanics of Contact

3.2.1. Classical theories

Contact is one of the common research topics becalugs wide applications in the
engineering field. The earliest theory of conta@ctmanics is due to the pioneering
researcher Heinrich Hertz who published a clasgpegler on contact in 1882 in the
German language. Subsequently several researchersvied the Hertz contact theory

by relaxing the limitations and extending its apation to more practical situations.

(a)Normal contact of elastic solids — Hertzian conthebry

Hertz contact theory (HCT) is established basedame basic assumptions: elastic
contact bodies, frictionless contact surfaces,inantus and non-conforming surfaces,
small strains and small contact area relative ¢opibitential area of contacting surfaces

(Johnson, 1985) .
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Fig. 3.1 shows two non-conforming solids (Body H d&ody 2) which contact at an
area that is finite and small compared to theiredisions. Assuming that the profile of
each surface is topographically smooth in both onaand macro scales, the profiles of

the contacting bodies are expressed in Eq. (3d)aR).
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The separation between the two surfaces is thenlestd as follows:
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Defining theu_Zl andu_22 as the displacements of points on each surfacegasdthe

compression displacement of two bodies, when paanésin the contact area, the

following expression can be written:

1 . 1
u,+u,=g—-———X 3.4
z1 z2 g 2R 2R y ( )

If Eq. (3.4) is not satisfied (as in Eqg. (3.5)) thodies are said to be separated.

— — 1 ., 1
u,+u,<g-—x 3.5
z1 z2 g 2R 2R y ( )

In Eq. (3.4) and (3.5),1_Zl andu_Zz are obtained implementing the elasticity theorthwi

the contact pressuke that is yet to be determined:

£l

—_ 1—;2 ” p(;’yjdxdy,

i 1-p*° ”p(;}’)dﬁy

B (3.6)

Inserting Eq. (3.6) into Eq. (3.4), an integral agon is obtained employing potential

theory. The resulting pressure distribution is themked out as:

= 3F / xX_y
p(x, y) = == 3.7)

whereaandb represent the major and minor axes respectivetietlliptical contact
zone and can be determined by resolving the follgvget of integral equations once

the curvatures of contact surfaces and R" are determined (Eq. 3.8):

1 _%F 1 p? T

R “an' E :(a +Z)J(a +5)('°2+<()Z (3.8)
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The analytical solution of contact dimensions anespure distributions between two
smooth elastic bodies is obtained through the alppweess. This problem is strictly
nonlinear because the displacement at any poiobfact depends on the distribution
of contact pressure throughout the whole contacezdhis leads to a significant
complexity to solve the integral equations of cohtpressure for each step in the
dynamic contact condition. As a simplification, thiertz contact spring’ is developed.
Assuming a simple Winkler elastic foundation rattiem elastic half space, the model
is illustrated in Fig. 3.2 which shows an elastiaridation resting on a rigid base and

contacted with a rigid indenter.

[777777777777/7777777/77/77/
Fig 3.2 Hertz contact foundation model (Johnso®5)9

Using the profile of the indent&(x, y) = %xz +% y?and the original compressed

displacement, the displacement profile of the contact surfdasegritten as:

(3.9)

LX) = {g -Z(x.y).9> Z}

0g<Z

The contact pressure at any point is assumed tiependent only on the displacement

at that point as in Eqg. (3.10).

p(x,y) = (K/h)u, (%) (3.10)
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Inserting Eq. (3.9) into Eqg. (3.10), the pressusgrithution is expressed as:

p(x,y) = (K /h)(g —%xz +% v?) (3.11)

By integrationof the pressure distribution thet@ontact force is obtained as:

F=Km*VRR /h (3.12)
where his the depth of elastic foundation. The relationship otact force and contact

indention is thus generated.

(b) Non- Hertz normal contact of elastic bodies

HCT application to practical problems is limited due to isuagption of strict smooth
elastic half space. To solve practical problems, norizHe®rmal contact solutions are,
therefore, developed. For the wheel/rail contact at,|IBésHertzian assumptions are
violated because of edge effect, discontinuous surfeafdepand interface frictions;

Hertz solutions are therefore not strictly applicable fotactrproblems at IRJs.

(i.) Edge effect

The HCT half space assumption is violated for problent®@ntering contact at non-
continuous profiles such as the edge of bodies. Masgarchers have examined the
edge effect in recent decades (Dundurs & Lee (193@putos & Theocaris (1975),
Comninou (1976), Bogy (1971), Khadem & O’Connor §29. Unfortunately
analytical solutions are not possible, with the problergsirang idealisations or gross

simplifications.
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A rigid punch with a square corner was considered @ssa of non-Hertzian contact
theory as the edge of the punch was not continuldusse tilted punch problems were
solved by Muskhelishvili (1949). The pressure distributidose€ to a corner

(s=a— x<< a) can be expressed as:

_ 2(1-v) -1/2
p(s) _—n(s— 4v)(2 a9 “cos{[(1/27)In(3- 4 )]In(2a/ )} (3.13)

where s is the distance from the contact edge corner and the contact patch

dimension.

Furthermore general edge problems that contain anglesrersmther than 90were
considered by Dundurs & Lee (1972) for frictionless taoh and by Gdoutos &
Theocaris (1975) and Comninou (1976) for friction&lations and by Bogy (1971)

for no slip.

(ii.) Discontinuous surface profiles

When there is curvature change within the the contact déineaHertz continuous
surface assumption is violated. The geometries of etfget problems are idealised as
a wedge or cone to formulate analytical solutions. piessure distribution was given

in Johnson’s (1985) book as:

O _ 1/2
p(x) = £S04 @t (@ = XY _ Ercot oy (3.14)
27T 2 Vig
1 1-v* 1-v°® :
whereﬁ = + = and a denotes the semi-angle of the wedge or cone.
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Love (1939) used the indentation of a flat surfagea blunt cone and gave similar
results. Similar work has also been done by Snedd®48) and Spence (1968).
However, the analytical solution for problems detirwith generalised contact profiles

is not yet found in the literature.

(ii.) Interface friction

The interface friction is inevitable in practicalusitions. In the normal direction, the
material elastic deformation in the tangential plarauses traction even without any
relative tangential movements. However, this isyapplicable to the cases that deal
with contacting bodies made of different materidtshnson (1985) has maintained that
the relationship for the normal pressure and wacfq = 1) still is valid for the slip
case. For stick situations, Mossakovski (1954,1%6®) Goodman (1962) studied this
using a 2D problem firstly, and Spence (1968) imptbtheir findings to show that
under appropriate conditions the stress field isssilar at all stages of loading. The
traction distributiong(x) is given as:

a+(d - %)"%
a-(g- %)Y?

909 = 2P - &) ¥7in |2 X 4 ing
7 la- X

(3.15)

where S represents the measure of difference betweenlasécematerials of the two

elastic bodies and can be calculated as in Eg6)3.1

A-2v/G 1 2v/ G},

(3.16)
L-viGHl -V G

L=l

whereG is the shear modulus.
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In summary, although the theory of classical cantaechanics is widely used in the
study of wheel/rail contact, the limitation imposky the basic assumptions and the
difficulty to obtain the analytical solution intrade significant challenges to the
specific problem of contact impact at IRJs. Thisesause classical contact mechanics,
especially Hertz contact theory, does not accoonttlie edge effect and material
plasticity. Although several non-Hertz contact $iolus are proposed in the literature,
analytical solutions for more general cases are yedtavailable and hence, their

application to railway engineering still remains fiaam being realised.

3.2.2. Computational theories

Computational contact mechanics is developed orb#is&cs of non-linear continuum
mechanics by employing numerical methods such editlite element method. The
contact is considered as a boundary conditionhis gection, the basis of the finite

element method is reviewed prior to presentingctiraputational contact theory.

(a) Basics of finite element method

Zienkiewicz (1971) has provided a displacement @gghn to solve the generalised

elastic continuum problems numerically as descriedw:

I.  The continuum is separated by imaginary lines ofames into a number of ‘finite
elements’.

ii. The elements are assumed to be interconnected discaete number of nodal
points located on their boundaries. The displacesehthese nodal points are the

basic unknown parameters of the problem.
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iii. A set of functions are chosen to define uniquedystiate of displacement within
each ‘finite element’ in terms of its nodal disatents.

iv. The displacement functions define uniquely thee stétstrain within an element in
terms of nodal displacement. These strains, togethign any initial strains and
constitutive properties of material will define tisgate of stress throughout the

element and, hence, also on its boundaries.

The finite element method introduces some appraotima to the solution. The first is
the displacement function which only approximategpresents the displacement
profile of the elements. The second relates tolibguim conditions that are satisfied

to within a prescribed level of tolerance.

The process of solving the equilibrium conditioreguivalent to the minimisation of
total potential energy of the system in terms & firescribed displacement field.
Therefore, finite element method applications carektended to almost all problems

where a variational formulation is possible.

Figure 3.3 2D discrete plane with elements
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For simplicity a two dimensional plane stress asialjormulation is provided here. In
Fig. 3.3, a typical finite elemeng, is defined by nodes, j,m and straight line

boundaries. The displacement field within this edetrat any point can be represented

as:

u = Nu, (3.17)

where N is the shape function ang, represents the nodal displacement for an
element. The strain-displacement relations are éxgnessed as:

£ =Bu, (3.18)
Matrix B is strain-displacement transformation matrix. S&tes are determined from:
o=D¢ (3.19)

where D is the elastic matrix.

By imposing a virtual nodal displacemeht,, equilibrium with the external and

internal work is achieved. Egs. (3.17) and (3.18)then rewritten as:
du = Ndu,,de = Bdu, (3.20)

The work done by the nodal forces is the sum ofptteelucts of the individual force

components and the corresponding displacement,
n ext = (due)Fe (321)

where F, is the nodal force.

In the same way, the internal work per unit voluhoae by stresses and body forces is
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worked out as:

M, =(de)o - (du) f (3.22)
or
M = (du,)(Bo - Nf) (3.23)

in which f is the body force.

Employing the virtual work principle that equatbe external work to the total internal

work, Eqg. (3.24) is obtained:
(du,)F, = (du,)(| Barixdy~ [ Nfdxdy) (3.24)

When the material elasticity is valid, substitutiags. (3.18) and (3.19) into Eq.(3.24),

the following equation can be obtained:
F, = [ (B" DBdxdyu, - [ Nfdxdy (3.25)

In Eq. (3.25),ke=jBT DBdxdyis the matrix of element stiffnes$;, is a set of

unknown parameters. In order to determine the atgphent fieldu,, boundary

conditions must be employed to resolve these emumtt the overall system level.

The stiffness of the whole system is obtained seabling the stiffness matrices of

all elements together.
K=Yk’ (3.26)

The principle of virtual displacement used abovsuees the equilibrium of the system
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for the displacement pattern that minimises theemixl energy. The equilibrium
would be complete only if the virtual work equalityr all arbitrary variations of

displacement were ensured.

Balancing the internal energy with the externalky@yq. (3.27) is obtained:
j(de)adv—[j( dy fdv+j( diy f dp=0 (3.27)

The first term of the above equation will be redagd as the variation of the strain

energy, . of the structure, and the second term that ibeénbrrackets is the variation

int

of the potential energy of external loalds,, .

Rewriting Eq. (3.27), we obtain:

d(M,, +M,,)=d(M )=0 (3.28)

int
wherell  is the total potential energy. This means theidiglement method seeks a

displacement field that keeps the total potentiergy stationary and minimised. In

that case, finite element method can be used inpaolylem in which functionlT

could be specified or in the following minimum catneh:

o,
ou,
on, jon, | _
= =0 (3.29)
ou ou,

In practical application, the equilibrium equaticzen be obtained by descretising the

40



virtual work equation and expressed as:
F(u)=0 (3.30)

The displacement field can be obtained by solvigg (B.30), and other terms such as

the strain and the force are derived from the obthdisplacement.

So far the finite element process to the lineastadgroblem is introduced. However,
in this thesis, because of the material plastiitgt contact boundary condition, the
non-linearity is involved. Thus the approach iseyafized to accommodate the non-
linear problems. Galerkin Treatment is commonlyduge a weighted residual method
to the general finite element process. On top af, tthe weak form of the differential
governing equations is introduced first. The goiregrequations are written in the
general form as:

H,(u)
H(u) =1 H,(u) ;=0 (3.31)

In a domairQ2 , with the boundary conditions

Jy(u)
Jw=<3(uy;=0 (3.32)

The equivalent weak-form is expressed as

ij(u)dmﬁvJ( ) d =0 (3.33)

Wherewand w are arbitrary parameters called weighted coefiicigq.(3.33) is

called the weakform of Eq.(3.31) and Eq.(3.32) vativer requirement of connectivity
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for displacement function.

The solution in approximation form is written afidaving:

u:ZNiq = Nd (3.34)
Whered is the nodal displacement field. The approximatmthe Eqg. () is written as:
ij(Nd)omj_wJ( Ng @ =0 (3.35)

The H(Nd) and J(Nd) represent the residual obtained by substituticthef

approximation into the differential governing eqaas. Eq.(3.35) is a weighted
integral of such residuals. The approximation tisusalled the method of weighted
residuals. To the weighted residual method, thezeadew treatments; among which,
the Galerkin method is most commonly used. The iG@lenethod chooses the shape

function as the weighted coefficient and written as

w =N (3.36)

J J

As a result, in the Galerkin method, Eq.(3.37)aswkd:

jNH(Nd)dmj NX NJ @ =0 (3.37)

(b) Computational contact theory

For contact problems, the contact between two Isodsetreated as a boundary

condition for each body. The contact pressure eaxdion represented by terfy (EQ.

3.27) are considered as boundary constraints. &lgealhge Multiplier method and the

Penalty method of contact constraint enforcemer amployed to solve the
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equilibrium equations.

Contact is a complex boundary condition becausts ofonlinearity. Before employing
the contact constraint enforcement to solve theliegum equations, the relation
between contact pressure/traction and displacenesds to be set up. As the state of
contact affects the relationship between the confaessure/traction and the
displacement, first the computational approach Ehastablish the occurrence of
contact. The following conditions are required t® dssessed in each computational

step.

non-contact

stick
slip

contacl{

A potential algorithm is presented as a simplesiliation. Consider Fig. 3.4 showing
two elastic bodieB',i =12. x. denotes coordinates of the original configuratitm.
the normal direction of contact, non-penetrationdition is defined as gap function

gy given by:

Figure 3.4 Two bodies in contact
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> 0(non- contac)
Oy =Ono — (U, —u,) [y =0(contac) (3.38)
< 0(penetratg

Eq. (3.38) is used to judge the state of contantfuntact, in whichn is the normal

vector to the contact surfacg,, is the original gap, expressed as Eq. (3.39):

Ono = (X, =) [N (3.39)
In Eqg. (3.38), in the conditiog, <0, the contacting bodies penetrate into each other

and the penetration is definedgs.

The tangential motions of contact state are astmtiaith stick and slip. Stick refers
to no relative motion between the two contact bedubile slip refers to existence of

relative tangential motion. The motion can be dadirusing a functioru; in the

tangential direction.

For stick condition:

ur =[I =nxn](u;, —u,) =0 (3.40)
while in slip conditions:

ur =[lI =nxn](u, —u,) Z0 (3.41)

where | is the unit matrix. Through Eq. (3.38) to Eq. (3,4the contact states are

determined.

The compressive contact pressyrewithin the contact patch can be expressed as:
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p=nlolh (3.42)

where o is the boundary value of stress on the contadaser For the slip zone, the

frictional tangential traction employs Coulomb fion law and is defined as:

q=p (3.43)

For the stick zone, the frictional traction is eegsed as:
q :5—']']_ pn (3.44)

The stresso is converted to displacement based on the elastielasto-plastic
material model. Thus, the relation between cornpaessure/traction and displacement

is developed.

(i.) Contact constraint enforcement

To solve the equilibrium equations, the contribataf total potential energy from the

contact boundary is extracted and Eq. (3.29) isitm as:

I, =3(M e M ) =0 (3.45)

extint

whereTl is the sum of internal and external energies exitem the boundary of

ext,int
contact, andT, is the energy contribution from contact. TRg,,, term in Eq. (3.45)

is further extended as:

Moo = [{8 T dVH{ICHY v df{ 3 u ] J01.F de (3.46)

The term_ is expressed in different forms depending on tjee tof contact

constraint method used. In this research, two commmethods, the Lagrange

45



multiplier method and the Penalty method are emgaloin the static and dynamic

analysis respectively.

1) Lagrange Multiplier method

In this method, the contact potential enefgy is written as:
M, = [(Agy +Au;)dS (3.47)

To get the solution of the multipliedg, A;, variation principle is employed as per Eq.
(3.45). In that process, multiplietg, A, are treated as the unknown variables. The

variation of the total potential energy generatesea of equations from which
multipliers is determined using Newton iteratiomgaithm. The overall process of
solving the contact boundary problem with Lagraihgeétiplier method is illustrated in

Fig.3.5. The multipliers @, and A; ) correspond to the normal and tangential

pressures fand q) respectively.

Begin
increment
Open Determine Closed
/ contact state \\_

Remave Apply
constraint Perfarm constraint
iteration

l W
Paintopens: S Paint closes:
eckchanges
severe p<0 f tac’? gy >0 _ severe
discontinuity inean discontinuity
teration Mo iteration
changes
Check No
equilibrium convergence
Convergence

End
increment

Figure 3.5 Process of solving the contact boungdesplem using Lagrange Multiplier

method (ABAQUS, 2003)
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2) Penalty method

Relative to the Lagrange method, the Penalty metiasithe advantage that in the

variational form the contact pressure and tractppand g are explicitly removed.

Similar to Eq. (3.47), the contact potential energp be expressed as:
1 .
Mo = JOn(gy)* + xyur ) ds (3.48)

where x,,, x; are penalty parameters, agg is the penetration function. The values
of penalty parameterg,, x; are properly set to avoid the ill-conditioned nuice

problem.

For ABAQUS/EXxplicit, which is employed for dynamémalysis of wheel/rail contact,
the process of solving the contact constraint uiegPenalty method can be described

as follows:

1) Surfaces of the two contacting bodies are firsdfireed as a ‘master-slave’ pair.

2) The Penalty method searches for slave node peoetgyf in the current

configuration.

3) Contact forces as a function of the penetratiotadiseg,, are applied to the

‘slave’ nodes to oppose the penetrations, whileaegond opposite pressurngs

are applied on the master nodes as equivalentdofidee penalty stiffness is

used to calculate contact forces.

4) The equilibrium equations with the contact forcesthen solved

Another constraint enforcement method named Kinenméthod is also available in

the ABAQUS/Explicit exclusively for the explicitrtie-integration method. The steps
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of this method are listed as follows:

1) The kinematic state of the model is advanced inforealicted configuration

without considering the contact conditions.

2) The depth and the associated mass of the penetsite®’ nodes are then

determined.

3) The resisting force required to oppose the peneirdtty using the penetration

depthg,,, massM and the time increment is then calculated.

4) The resisting forces are then applied to the ‘nraated the ‘slave’ surfaces to

adjust the contact body from penetrating to comgct

5) The equilibrium equations containing the contactés are then solved.

(c)ALE Formulation

For contact problems, Lagrangian formulation emetbin this thesis, is well
understood and frequently used to solve the paaticgineering problems. However,
this formulation requires considerable computati@aat especially when the contact
model is large in size and the contact area resju@ned mesh. For that reason,
another efficient formulation namely, Arbitrary lraggian Eulerian (ALE), is
recognized and developed in the recent years by mesmearchers such as Nackenhorst
(2004),Ponthot and Belytschko (1997), Brinkmeier(€007). The major ALE

advantages for rolling contact problems can bélgremncluded as:

1) A spatially fixed discretisation is introduced, whienables local refinement

in the contact zone for more accurate analysis

2) Error control and adaptive mesh refinement candyéopmed with respect to
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the spatial discretisation only

3) Superimposed transient dynamics is immediately riest in space domain,

which is required for example for rolling noise bs&s

4) Within a purely Lagrangian description the wholegimference of the wheel
has to be discretised as fine as needed for alettteontact analysis. The
number of unknows is drastically reduced when thHing process is

observed in a spatial observer framework

5) For the treatment of the explicit time dependemaetdiscretisation schemes
have to be involved. A stationary operating poias o be computed starting

from the resting state

However, due to its rare application in the comna¢i@de, which is important for
practical modelling, in this research the Lagrand@mulation is employed. The
basics of ALE formulation is briefly reviewed inghsection for possible further model

development in the future.

For rolling contact problems, the general idea bEAormulation is the
decomposition of motion into a pure rigid motigh)(and the superimposed

deformation p). The material deformation gradient is

A

0=0M (3.49)

Where theQ is the pure rigid body motion and tile is a measure for the deformation

of rolling body.
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The elementary balance laws of solid mechaniceenALE formulation contain two

section: balance of mass and balance of momentbmba&lance of mass is

represented as Eq. (3.50)
M = J.é),odv =j¢,0dv =J P, dVv= cons (3.50)

Where theM is the masspis the mass density and thies the mass volumn. On the
other hand the balance of momentum is written BeWing with respect to the

reference configuration,
A . dv
DivP+pf = pa (3.51)

The P denotes the First Piola-Kirchhoff stress tensis the body force density and

the v the velocity of the material particals. The bouydaondition can be described as:

S

S (3.52)
PN=T

In addition the contact conditions should be siatisf

For approximate solutions using the finite elenmaathod the balance law is re-written

in a weak form as Eg. (3.53)
A dv. ~
j(D|vP+pf —,oa) L\ (3.53)

This equation can be further developed to the mergal finite element representation
of the equations of motion,
Md + Gd +[ K_ NA d:f ext +f inertia _f int (354)

To be solved for the evolution of the displacenfeid
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d" =d"+Ad (3.55)
The K is the tangential stiffness matrix, M is the staddaass matrix

G =j,b( N"A- A N) dV (3.56)
is the gyroscopic matrix and

w=[pA AdV (3:57)
is the ALE inertia matrix obtained from the lineztion of the centrifugal forces.

For the contact boundary condition, the normal amgential contact can be treated
locally decoupled. For the normal contact, the mm@ment of the Signorini condition

is written as
gy <0,p=0,pg, =0 (3.58)

Well established algorithm for contact computaiwam be applied directly to enforce
the normal contact constraints. The penalty metboéxample leads to the contact

force contribution

contact —

—T
f ——j N x'g,da (3.59)
Contribution to the tangent matrix:

K —.[)(nNTargnTNda (3.60)

contact

However, the well established techniques develeg#dn a pure Lagrangian
framework can not be applied directly to enforoe tdngential contact constraints
within the ALE picture. This leads to the additibtraatment from the Lagrangian to

ALE formulation and can refer to Ziefle’'s (2007) ko
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3.3. Review of Solution Methods for Finite Element Madh

The solution methods for non linear problems canlassified into two types:
* Time independent
* Time dependent

The time independent algorithm is explored foristatoblems without considering the
inertial effect, while the time dependent algoritlesuitable for the dynamic problems
in which the inertial effect is not negligible. Boof the two methods are employed in

the finite element model used in this research.

3.3.1 Algorithm for time-independent problems

For static non-linear problems, iteration methodshsas the Newton’s method are
widely used in the finite element analysis to sdle system of equilibrium equations.
The entire procedure of solving the non-linear ¢igua is divided into several

increments and each increment is subdivided ietatitons.

Eq.(3.30) can be written as follows with the supeps n representing the increment

n:
F'(u)=0 (3.61)

Theu is the exact solution of displacement. To obtéiat tsolution, assume that an

approximationu; is obtained after the iteratian The Au, is the difference betwean

andu,, so:
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F (U +Au) =0 (3.62)

Expanding the left-side of this equation in a Tageries gives:

n 2 n
F"(ui)+ai(ui)Aui +9 F2 (u)Au’+...=0 (3.63)
ou. ou

1 I
Sinceu, is a close approximation to the solutidxy, should be small. As a result, the

second and higher order terms/af, can be neglected. Eq. (3.63) is simplified as:

K'Au, = -F" (3.64)

WhereF" = F"(u; )Jand K" is the Jacobian matrix which is solved as:

k=" () (3.65)
du

Au, can then be obtained from Eq. (3.64) and the aeptoximation is expressed as:

Uy =U; +AU, (3.66)

The iteration continues until thiu, is small enough that the solution is considered

convergent.

3.3.2 Algorithm for time-dependent problems

For dynamic problems, two algorithms have been lyidsed in the finite element
method: explicit time integration method and implitime integration method.

Wriggers (2002) gives basic instructions aboutéhes methods:

» Explicit time integration methods are easy to impdat, since the solution

at timet,,, depends only upon known variablestat These methods are
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extremely efficient when the mass matrix is appnaxed by a lumped
mass matrix which is diagonal. Explicit methods eoaditionally stable,
which means that the time step size is governethdy ourant criterion
(a condition on numerical method calculations reog that the time
interval employed be no greater than that requifed a stress wave to
cross the characteristic length of elements).

* Implicit time integration method schemes approxertane derivatives by

quantities which also depend upon the last timp gtand upon the still
unknown values at timg,,. These methods require a solution of a

nonlinear equation at each time step. They are mundne expensive,
since they have to be combined with, for exampk Newton procedure.
However, implicit schemes can be constructed sot ey are
unconditionally stable, and hence can be appliethwi far bigger time

step than the explicit schemes.

The time step size for both these two methods digpen the nature of the problem.
For high frequency response problems, such as imaamall step size is necessary
which should be lower than the time period of thersl wave travelling through the

characteristic length of element.

For dynamic problems, the inertial force is notligggle and the system is in dynamic

equilibrium which is expressed as:

Mi+C,u+ Ku= F (3.67)
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(a.) Explicit time integration

In the finite element method, a central differersohieme is widely applied where

velocities and accelerations at tirfyeare approximated by:

u

v — Yna T

un—l

— un+1 ~ 2un + un—l

" (At)?
Inserting the above functions into Eq. (3.63), B069) can be obtained:

At At
(M +7C)upy = (Y[ F, = KuJ += Cyuy, + M2 4y )F (3.69)

To solve, initial conditionsy, andu, are required. Note the term_, exists, which
means at the first step, needs to be determined first. By using a Taylatese

expansion at time_,, we obtain:

2
u, = uO—Atuo+%'u0 (3.70)

whereli, is obtained from Eg. (3.67) as follows:
U, =M [-C,i, — Ky, + F] (3.71)

The process introduced above is the concept ohssicial approach of solving the
equations explicitly. Different finite element cadedopt different algorithms. In
ABAQUS/Explicit, the equations of motion for the dyo are integrated using the

explicit central difference integration rule:

I .
SO A (3.72)

1 .
i+= i
2
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l‘Ii+1 = l‘Ii +Ati+1u_ 1 (373)

+=

where u is velocity andi is acceleration. The subscriptefers to the increment
1 1 - .
number andi —— and i += refer to mid-increment values. The central diffeen

integration operator is explicit in that the kindroatate can be advanced using known
values ofu , and, from the previous increment:
i1
2
t; =M " [Fy, — F) (3.74)

where M is the nodal mass matri¥

Text

is the applied external load, af, is the

internal force.

Special treatment of the mean velocitieg, u , etc. is required for initial conditions,
i+= i-=
2 2

certain constraints, and presentation of results. ffesentation of results, the state

velocities are stored as a linear interpolatiothefmean velocities:

U, =u , +%Ati+1[ii+l (3.75)

i+=
2
The central difference operator is not self-startilecause the value of the mean

velocity u ; needs to be defined:
2

U, =U, +—L, (3.76)

2

Substituting this expression into the updated esgiom foru , yields the following
i+

definition ofu , :
2
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= U, -2 (3.77)
0 0

The explicit procedure requires no iterations andangent stiffness matrix (See Eq.
(3.74)), thus explicit integration dynamic analysegjuires less computation cost for
each time increment. However, as the central diffee operator is conditionally stable,
the increment should be significantly small. Thebdity limit for the operator is given

in terms of the highest Eigenvalue in the system as

M<—2 (f1+&7)-8) (3.78)

wm ax

where ¢ is the fraction of critical damping associatedhatiie highest mode. Another

conservative estimate of the stable time incremantbe given by the minimum taken

over all the elements:
At =min(L,/C,) (3.79)

where L, is the characteristic element dimension @dis the current effective

dilational wave speed of the material which is tedawith density, elastic modulus,

and Poison ratio of the material:

C,= |__E@-v) (3.80)
pL+u)1-)

ABAQUS/EXPLICIT uses the explicit integration algbm for solving equilibrium
equations. Simulations using this method generake of the order of 10,000 to

1,000,000 increments, but the computational casinpeement is relatively cheap.
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(b.) Implicit time integration

One of the most widely applied implicit methodghie Newmark (1959) method. The
approximations of displacement and velocity at tijpeare based on the following

two functions:

2
U, =Uu, +At, +%[(1—2z9)uﬂ+ 290, ],

U, = U0, +Af(1l-v)b, +ou,,].

(3.81)

where the constant parametefsand v can be chosen freely and the order and
accuracy of the method is determined. By inserkng (3.81) into Eq. (3.67), we can
get the equilibrium equation which can now be stlisg using some iteration method
such as the previously introduced Newton method. dBjaining the solution of

accelerationi,,,, other variables like displacement and velocity @ worked out

using Eq. (3.81).

In summary, for the solution of wheel/rail dynansientact at IRJs, both implicit and
explicit methods may be used. However, there ammesaignificant differences

between them. The implicit method calculates theral dynamic response of the
structure in each iteration while the explicit nethemploys the wave propagation
solutions associated with relatively local respoimseontinua. The implicit method is

unconditionally stable because of the iterationcpss. In contrast, the conditionally
stable explicit method is only stable when theéneent is small enough relative to the

stress wave propagation.

The nature of impact problems determines thatithe increment should be small and

hence the number of increments would be numeroysisihg the implicit method,
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the computational cost would be unacceptablely esipe as every increment would
involve a number of iterations. By contrast, theleit method would provide a much
cheaper solution by computing local response i @@rement; a reasonably accurate

result can be guaranteed if the increment stepps $mall.

3.4. Discussion of Contact Impact

The impact condition emerges as the rate of loadifigh and the dynamic effects are
important. In other words, in wheel/rail rolling sliding contact, the material inertia
flows through the deforming region and influencles stress field. This leads to the
stress propagation wave in the contact bodies aserial plasticity may be caused
under the high rate of loading. Referring to Jon&®85), the stress wave amplitude
is expressed as:

0 = pc,V (3.82)
where o is the stressp is the contact body density, is the stress wave propagation
velocity andv is the deformation velocity of the contact bodfy.tHe stress value
exceeds the yield stre¥s, the material yields. To keep the material instta
condition, the deformation velocity must be lesatthe certain value:

v<Y/pc, (3.83)

For steel material employed in this research, thkl\stress is 780MPa, the density is

7800Kg/m®and therefore the stress propagation speed is 5800%s a result, the
maximum impact velocity in the deformation directidor elastic deformation is

16.95m/s. Deformation rates above this magnitudeesmaterial yield.
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3.5. Summary

In this chapter contact mechanics was first brieflyiewed. For classical theory, the
Hertz contact theory has provided the analyticaitact solution with the elastic half
space assumption. Non-Hertz theory has also besnistied and it was shown that it
better represents some special contact situatibmsever, it has also been shown that
both Hertz and non-Hertz theory did not provideracpical solution for wheel/rail
contact at IRJs. For computational contact meclsatie contact boundary conditions
have been introduced through constraint enforceniér@ Lagrange Multiplier method

and the Penalty method appear advantageous faptitact solutions.
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