CHAPTER 2

LITERATURE REVIEWS ON THE
STOCHASTIC RAINFALL
DISAGGREGATION

Stochastic Disaggregation of Rainfall is based melsstic point processes. A simple
stochastic point process of rainfall can be coneded by storms arriving in a Poisson
process, and each storm is associated with a ramshahsingle rain cell of rectangular
pulse with independent intensity and duration. Tdia cells can overlap, and the total
rainfall intensity at any instance can be giventliy sum of the intensities of all active
rain cells at that instance. One of the shortcomiofgthis type of conceptual model is
that they are not capable of accounting for theptaal statistics of rainfall at different

aggregation levels (Rodriguez-lturbe et al. 1987).

Cluster based models such as Neyman-Scott ande@dmlwis were introduced by
Rodriguez-Iturbe et al. (1987 and 1988) as meagaregercome the shortcomings of the
point processes. These cluster based rainfall reaale actually based on the Poisson
process with some adjustments. In the cluster basedels, each storm produces a
cluster of rain cells instead of one as in the &npisson point process, with each cell
having random duration and intensity. From a dtaéispoint of view both randomised
and nonrandomised versions of the models are patanamalyses. Normally, these
parameters are estimated by the method of momeetghe et al. (1994) have shown

discrepancies in these parametric statistics &drdifit aggregation levels.



Some researchers have suggested different appsoéahenprove the results of these
models. Rodriguez-lturbe et al. (1987) incorporatdtdgh frequency jitter process to deal
with more irregular rainfall traces. Onof and WiezgtLl994) combined this jitter process
with the 6-parameter randomised Bartlett-Lewis nhoaled advised against seeking
models with more than seven parameters for eachthhmanthe year. Gyasi-Agyei and
Willgoose (1997) adopted a hybrid point rainfall aeb that incorporated two random
processes, name{A(t)} and{Y(t)}. The binary (wet and dry) procepé(t)} was chosen
as the non-randomised Bartlett- Lewis Rectanguldseé’simply because of its capacity
to simulate continuous rainfall time series withwée parameters and also due to its
ability to aggregate and disaggregate into deginedscales. The intensity procqsgt)}
was chosen as an autoregressive and autocorreiieerdmodel. Cowpertwait (1991)
developed the dry probability equations for usehe Neyman- Scott model with the
same intention. Cowpertwait (1998) also made coispas between these two models

and showed their similarities up to certain ordatistics.

There have been some initiatives to use these maddioth space and time. Northrop
(1998) developed a spatial-temporal model basedhenBartlett-Lewis model, while

Cowpertwait (1995) derived spatial-temporal modedperties based on the Neyman-
Scott model. Cowpertwait (2006) proposed a fitfimgcedure to use the spatial-temporal
Neyman-Scott model to disaggregate daily data hotarly data, to infill missing values,

and to simulate data at sites where no historiatl dere available. To deal with the non-
stationarity of the land surface, Margulis and Eh&bi (2001) proposed two temporal
disaggregation models based on satellite-derivegtipitation. Segond et al. (2006)
introduced a spatially uniform temporal disaggregapattern to a multi-site rain gauge

network. This technique had some limitations in dations of extreme rainfall and
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correlation structures. Elshamy et al. (2006) eat&ld the Geng rainfall model (Geng et
al. 1986) and advised of calibrating the Geng patamestimation equations to reduce
the overestimation of rainfall variability of theiginal model, but this technique was
emphasised only on a regional basis using smadisd&t for temporal disaggregation of

monthly rainfall to daily rainfall.

Gyasi-Agyei (1999) regionalised the Bartlett-Levinased hybrid model (Gyasi-Agyei
and Willgoose 1997, 1999) for daily rainfall disaggation. Cowpertwait et al. (1996)
used a fitting procedure for the Neyman-Scott basedel to disaggregate daily rainfall.
Some researchers did not take the seasonal variafiohe rainfall data into account.
Glasbey et al. (1995) proposed conditional simafato calibrate the model parameters
using statistics of hourly rainfall data. Their nebdvas used to generate an archive of a
large number of years of rainfall data. The bestchres from the observed and the
generated sequences, and the hourly data fromattecpents, were used to generate the
disaggregated rainfall sequence. This approachndidnecessarily predict the second
order characteristics and dry probabilities du¢ht constraint put on the disaggregated

sequence to follow the same trend in the meanathinf

Koutsoyiannis and Onof (2001) proposed a propoafioadjusting procedure on a
Bartlett-Lewis based model that preserved the idda observed daily totals while
disaggregating rainfall into fine timescale. Koytismnis et al. (2003) also discussed
multivariate rainfall disaggregation schemes. Harsed Ines (2005) advised in favour
of constraining a stochastic generator to matclarget monthly rainfall total while

disaggregating monthly rainfall. Even though thigmach does not directly manipulate
rainfall frequency or intensity, it is yet to belidated for reproducing the relationships

among variations of historical fine timescale ralhfotals, frequency and mean intensity.
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Sivakumar (2000) and Sivakumar et al. (2001) predas chaotic model for temporal
rainfall disaggregation based on correlation din@nmsnethod. However, this approach
gave rise to much controversy on whether a detéstranchaotic process exists in the
temporal evolution of rainfall (Koutsoyiannis anddhakis, 1996; Schertzer et al. 2002).
Gaume et al. (2006) established firmly that no timensional chaotic behaviour exists

in the rainfall temporal disaggregation.

Cascade-based, fractal and multifractal approadteae been proposed for rainfall
disaggregation into fine time scale (Ormsbee, 1988sson, 1998; Olsson and
Berndtsson, 1998; Gunter et al., 2001; Molnar anda@do, 2005). The regionalisation
of parameters and preservation of second ordeistgtat such as variance and
autocorrelations need to be explored in these esudilso the overestimation of rainfall
extremes at longer durations are yet to be analyskdth canonical and micro-canonical
cascade based models of disaggregation. Gaume (@086) showed that neither a low
dimensional chaotic model nor a multifractal muitative random cascade model can
reproduce faithfully all the characteristics ofnfail time series. Gyasi-Agyei (2005)

developed a regionalised disaggregation model basdte point process hybrid model
of Gyasi-Agyei and Willgoose (1997). This model vtlas product of a binary chain (wet
and dry sequence) model and an autocorrelated @ttantensity process model. This
model incorporated the use of repetition technicares proportional adjusting procedure
proposed by Koutsoyiannis and Onof (2001) to disaggte daily rainfall data into

hourly time scale. The model was evaluated withye&r time series of hourly rainfall

observed at a small experimental site, and denaiesitthe preservation of the multiple
sub-daily time scale stochastic structure of rdiraffter disaggregation. Gyasi-Agyei and

Mahbub (2007) extended the original stochastic ro(&yasi-Agyei, 2005) by
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disaggregating daily rainfall data throughout Aak#rto any desired fine timescale down
to 6-minute. This research will evaluate the reglmed disaggregation model (Gyasi-
Agyei, 2005; Gyasi-Agyei and Mahbub, 2007) and emplits improvement to make it

applicable for a broader Queensland region.

Another focus of this research would be a robupt@gch to the derivation of Intensity-
Frequency-Duration (IFD) curves for a large regsuch as Queensland based on
stochastic disaggregation of daily rainfall intoditimescale. Analytical IFD curves are
determined from an assumed probability distribufiomction of either annual or seasonal
maximum rainfall series (Muller et al., 2007; Leohat al., 2007; Koutsoyiannis et al.,
1998; Cowpertwait et al., 2002; Koutsoyiannis amaloBtsos, 2000). The Australian
Rainfall and Runoff (ARR) have standardised thewation of design IFD (Canterford
et al., 1998) through a set of standard maps ferAthstralian continent. The analytical
probability distribution functions are different &l approaches. Hence there is a need to
derive the design IFD curves with a unifying apptoarlhis research will evaluate the
stochastic disaggregation of daily rainfall intaditimescale based on a point process

model to derive the IFD curves at different fimadiscale durations.

In summary, it can be seen that all of the propgseidt process models for rainfall
disaggregation are somewhat variants of either Bhaelett-Lewis rectangular pulse
model or the Neyman-Scott model. Therefore, a etadiscussion on these two basic
rainfall models is necessary. The following twotgets describe in greater length both

Neyman-Scott model and Bartlett-Lewis rectangulds@ model, respectively.



2.1  The Neyman-Scott Model

The schematic diagram of the Neyman-Scott Modghien in Figure 2.1 (Cowpertwait,

1991).
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Figure 2.1  Schematic representation of thedyman — Scott Model

The generating mechanism of any rainfall eventsisumed as the storm origin. This

storm origin may be passing fronts or some othieréa for convection storms, from
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which rain cells arise in our study area. The follgy are the main assumptions of the
Neyman-Scott Model:
* The storm origins arrive according to a Poissorcgse with rate parameter
* Each storm origin generates a random number of cells, for which the
waiting time after the storm origin of each rairl ¢& exponentially distributed
with parametep.
* The duration of each rain cell is exponentiallytrilisited with parametey.
* The intensity of each rain cell is constant thraughits duration and is
exponentially distributed with parameter
* The total intensity at any instant in time is thuensof all the intensities due to
all active cells at that time.
It is also assumed that the intensity, duration @wading time after the storm origin of

any rain cell are independent of each other aneratin cells.
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2.2  The Bartlett-Lewis Rectangular Pulse Model

The schematic diagram of the Bartlett — Lewis Madajiven in Figure 2.2.
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Figure 2.2 Schematic representation of the Biett-Lewis Model

The Bartlett-Lewis Model has two versions namebndomised and non-randomised.
Following are the principal assumptions of the mandomised Bartlett Lewis Model:

» Storm origins occur with a Poisson process of tate
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» Each storm origin is associated with the arrival cell origins which are
governed by a Poisson process of fath is assumed that one cell arrives at the
storm origin.

» Cell arrivals of each storm terminate after a tex@onentially distributed with
parametey.

» Each cell has a duration exponentially distributéith parameter.

* Each cell has uniform intensity with specified dimition, typically assumed as
exponential with parametagrs.

In the randomised Bartlett Lewis Model (Rodriguarie et al., 1988), the parameter
of the rectangular pulse duration varies randomgywien storms. This model thus
incorporates structurally different storms with Isehaving random durations. The
parameter; is assumed to be Gamma distributed with indend scale parameter In
summary, the non-randomised version of the Baitlettis Model has five parameters
namely,4, B, v, n andu 4 to calibratewhereas the randomised version has six parameters
namely,Z, S, y, a, v andu x to calibrate. Gyasi-Agyei and Willgoose (1997) whd that
both the randomised and the non-randomised Balkiistis Models gave satisfactory
results for point rainfall estimation. As the randsed model has one parameter more
than the non-randomised model it needs more caionlaime for the processor,
especially when the data are grouped on a montagrsb For this reason, the non-
randomised version of the Bartlett-Lewis Model veakopted for the generation of the

wet and dry sequence of the rainfall process.

The next chapter describes the data and the raatddilstics used in the model.
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