CHAPTER 3

DATA ANALYSES AND RAINFALL STATISTICS

The data for this research have been sourced from the Bureau of Meteorology (BOM) Australia, The Department of Natural Resources and Water (DNRW), Queensland and the Gregory field trial site. The following sections discuss these three data sources and the rainfall statistics that have been used in the research.

3.1 Data

3.1.1 The Bureau of Meteorology (BOM) Data

The data analyses started with the 6-minute data supplied by the Bureau of Meteorology (BOM) for the regions 35, 39 and 40 of Central and South-Eastern Queensland. Figure 3.1 shows the Australian Rainfall Districts defined by BOM.

Figure 3.1 Australian Rainfall Districts

The intention is to identify regional parameters and check whether these parameters remain constant or vary across regions. The primary reason for selecting the regions 35, 39 and 40 is that they are the adjacent regions around Rockhampton in Queensland from where our analyses will be controlled. Since Rockhampton is one of the climatic stations used to develop the Australian Rainfall Database SILO Data Drill facility, the synthetic data are expected to be very close to reality. Table 3.1 shows the initial pluvio-stations having at least 10 years of 6-minute observed rainfall data for all months of the year that were used.

Station ID	Site name	Latitude	Longitude	Data Length, yr	Station ID	Site name	Latitude	Longitude	Data Length, yr
35000	ALPHA POST OFFICE	-23.6497	146.6411	17.8	40112	KINGAROY PRINCE STREET	-26.5544	151.8456	36.9
35025	DINGO POST OFFICE	-23.6456	149.3308	21.7	40126	MARYBOROUGH	-25.5181	152.7111	26.9
35029	GILIGULGUL	-26.3564	150.0464	33.1	40135	MOOGERAH DAM	-28.0303	152.5531	38.9
35059	ROLLESTON METEOR ST	-24.4619	148.6261	18.3	40152	MURGON POST OFFICE	-26.2425	151.9425	33.6
35065	SPRINGSURE DAME ST	-24.1222	148.0867	35.4	40160	NERANG GILSTON RD	-28.0092	153.3175	19.4
35069	TAMBO POST OFFICE	-24.8819	146.2564	40.6	40178	RATHDOWNEY POST OFFICE	-28.215	152.8639	37.7
35070	TAROOM POST OFFICE	-25.6408	149.7958	32.4	40180	MARGATE COLLINS ST	-27.2517	153.1008	16.6
35090	REWAN STATION	-24.9606	148.3761	28.3	40189	SOMERSET DAM	-27.1169	152.555	23.7
35104	KILMACOLM	-22.4	147.5333	18.8	40192	SPRINGBROOK FORESTRY	-28.2264	153.2786	37.1
35147	EMERALD DPI FIELD STATION	-23.4669	148.1519	22.8	40197	MT TAMBORINE FERN ST	-27.9694	153.1953	33.1
35267	COOVIN	-22.4269	147.5478	21.5	40214	BRISBANE REGIONAL OFFICE	-27.4778	153.0306	84.4
39006	BILOELA DPI	-24.3789	150.5164	55.3	40222	KALINGA BOWLS CLUB	-27.4117	153.0456	33.3
39069	WALTERHALL	-23.6292	150.3869	32	40223	BRISBANE AERO	-27.4178	153.1142	50.7
39070	MT PERRY THE PINES	-25.1694	151.6375	26.5	40241	SAMFORD CSIRO	-27.3617	152.8861	36.6
39083	ROCKHAMPTON AERO	-23.3753	150.4775	66.1	40265	REDLANDS HRS	-27.5278	153.25	38.3
39090	THEODORE DPI	-24.9503	150.0725	38.1	40282	NAMBOUR DPI	-26.6431	152.9392	51.1
39123	GLADSTONE RADAR	-23.8553	151.2628	36.5	40308	MT GLORIOUS FAHEY RD	-27.3342	152.7717	30.6
39128	BUNDABERG AERO	-24.8885	152.3235	24.7	40312	NEW BEITH	-27.7356	152.9442	31.6
39140	BUILYAN FORESTRY	-24.5333	151.3833	16.9	40406	BEENLEIGH BOWLS CLUB	-27.7094	153.2014	35.7
39297	BUILYAN GUM STREET	-24.5272	151.3814	21.8	40458	CAPALABA WATER TREAT	-27.5314	153.1825	34.3
39303	CHILDERS SOUTH	-25.2558	152.2819	26.6	40459	CARINA BCC DONALDSON RD	-27.5	153.1	17.3
39314	TOWN OF 1770	-24.1542	151.8875	16.3	40460	MOUNT COTTON UNI FARM	-27.6081	153.2381	33.1
40004	AMBERLEY AMO	-27.6297	152.7111	43.8	40461	FERNY HILLS AUST WOOLSHED	-27.3947	152.9308	32.3
40014	BEAUDESERT	-28.0206	153.0131	36.8	40469	MARODIAN HOMESTEAD	-25.8694	152.3172	33.7
40019	BENARKIN FOREST STATION	-26.9	152.15	19.4	40496	CALOUNDRA WATER TREAT	-26.7928	153.1286	32.8
40059	COOROY COMPOSITE	-26.4181	152.9128	32.9	40537	DUNWICH	-27.4969	153.4078	20.2

Table 3.1Pluvio-Station ID with minimum 10 years of 6 Minutes Rainfall
Data for all months

Station ID	Site name	Latitude	Longitude	Data Length, yr	Station ID	Site name	Latitude	Longitude	Data Length, yr
40062	CROHAMHURST	-26.8094	152.87	28.3	40584	HINZE DAM	-28.0481	153.2875	31.5
40063	DAYBORO POST OFFICE	-27.1967	152.8247	28.9	40606	UPPER MUDGEERABA WATER	-28.1056	153.3289	30.7
40082	UNIVERSITY OF QUEENSLAND GATTON	-27.5436	152.3375	46.2	40609	ELANORA WATER TREAT	-28.1181	153.4456	30.4
40093	GYMPIE	-26.1831	152.6414	22.8	40659	GREENBANK THOMPSON ROAD	-27.6958	152.9408	28.7
40094	HARRISVILLE POST OFFICE	-27.8117	152.6675	34.8	40677	MAROON DAM	-28.1753	152.6553	27.8
40106	KENILWORTH TOWNSHIP	-26.595	152.7236	19.6	40715	SHAILER PARK OREGON DRVE	-27.6511	153.1933	17.1
40111	KILKIVAN POST OFFICE	-26.0861	152.2381	33.9					

3.1.2 The Department of Natural Resources and Water (DNRW) Data

Fine timescale data are not available for all stations throughout Australia. Also, the data lengths vary quite substantially among the stations where fine timescale data are available. Synthetically produced data can provide uniform data lengths throughout the stations in a region. A source of such synthetic rainfall data is the SILO Data Drill maintained by the Department of Natural Resources and Water (DNRW), Queensland (http://www.nrw.qld.gov.au/silo/datadrill/index.html). The SILO Data Drill is a database that generates long term (1889 to date) synthetic daily rainfall data at any location within the Australian continent.

Three BOM rainfall stations from Table 3.1 have been selected for the synthetic data analyses. These were Rockhampton, Dingo and Brisbane in Queensland with BOM Station ID 39083, 35025 and 40214 respectively. This research used the synthetic daily data for these three stations from 1889 to 2006.

3.1.3 The Gregory Field Data

As part of erosion control studies on a railway embankment, under the banner of HEFRAIL Project (Gyasi-Agyei, 2005), rainfall data at 1-minute timescale were collected at the Gregory field trial site (Gyasi-Agyei, 2003, 2004; Gyasi-Agyei et al., 2001). The Gregory field trial site is situated between 8.450 and 8.750 km marks on the Gregory railway line, Central Queensland. The coordinates of the site are latitude 23.55 S

and longitude 148.70 E. Tipping bucket pluviometers of a resolution of 0.18 mm were used. The data length of the Gregory site for this research is 9 years (from January 1998 to December 2006). These 9 years data were aggregated to 6-minute timescale to conform to the BOM data.

3.2 Rainfall Statistics

The first and second order properties from the observed 6-minute rainfall data (mean, variance, Lag-1, 2 and 3 autocorrelation, dry probabilities, duration, Lag-1, 2 and 3 auto covariance) are calculated for 12 aggregation levels (0.1, 0.2, 0.3, 0.5, 1, 2, 4, 6, 8, 12, 18 and 24 hour) and for each month of the year. The time series of all aggregation levels are generated sequentially for each month.

A brief description of each of these rainfall statistics and how they are calculated is given in the following sections.

3.2.1 Mean

The Mean is defined as the sample average of the corresponding time series for the specified month at a specified aggregation level. For the rainfall time series, the mean is defined as:

Mean,
$$\overline{X} = \frac{\sum X_t}{N}$$
 (3.1)

where X_{t} is the rainfall depth of the time series for the specified month at a specified aggregation level and *N* is the number of sample data of the corresponding month and aggregation level.

3.2.2 Variance

The Variance is defined as the sum of the squared deviations for the corresponding aggregation values from their mean divided by N -1. The variance of the rainfall series is defined as:

Variance,
$$\sigma^2 = \frac{\sum (X_t - \overline{X})^2}{N - 1}$$
(3.2)

This is the variance of the specified month which the time series corresponds to.

3.2.3 Autocovariance

Autocovariance is defined as the serial covariance function at a time lag of the same time series.

Autocovariance at Lag
$$\tau$$
, $C_{\tau} = \frac{1}{N-1} \sum (X_t - \overline{X})(X_{t+\tau} - \overline{X})$ (3.3)

For example, in the 6-minute Lag-2 Autocovariance equation, X_t is the rainfall data of the first interval and X_{t+2} is the rainfall data lagging every two intervals from the first one.

3.2.4 Autocorrelation

Autocorrelation is defined as the serial correlation function at a time lag of the same time series.

Autocorrelation at Lag
$$\tau, \rho_{\tau} = \frac{\text{Covariance of } X_{t}, X_{t+\tau}}{(\text{Standard Deviation of } X_{t})(\text{Standard Deviation of } X_{t+\tau})}$$

(3.4)

When the size of the sample becomes very large (>>100), the standard deviation would be the same for both X_t and $X_{t+\tau}$ for any time series. In that case, the Autocorrelation equation reduces to:

Autocorrelation at Lag
$$\tau = \frac{\text{Covariance of } X_t, X_{t+\tau}}{(\text{Variance of } X_t)}$$
$$= \frac{C_{\tau}}{\sigma^2}$$
(3.5)

In the 6-minute Lag-2 Autocorrelation equation, X_t is the rainfall data of the first interval and X_{t+2} is the rainfall data lagging every two intervals from the first one.

3.2.5 Dry Probability

The Dry Probability is defined as the frequency of occurrence of the dry intervals in a specified aggregation level time series. For example, the 6-minute Dry Probability can be defined as:

6- minute Dry Probability,
$$P(h) = \frac{\text{Number of 6-minute dry intervals}}{\text{Total number of intervals in the 6-minute time series}}$$
(3.6)

where *h* is aggregation timescale in hours, e.g., 6-minute Dry Probability is written as P(0.1). The Dry Intervals denote the intervals with "Zero" rainfall or no rain.

3.2.6 Duration

The Duration is defined as the average duration of storm events for a specified aggregation level time series. The average duration of the 6-minute rainfall event can be defined as:

```
6-minute average Rainfall Duration = \frac{\text{Sum of the durations of 6-minute events}}{\text{Number of 6-minute events}}
```

(3.7) 19 Table 3.2 shows the first and second order rainfall properties for the first station of Table3.1 with station ID 35000 for the month of January for all aggregation levels.

Aggregation Level, hr	Mean, mm	Variance, mm ²	Autocorrelation			Dry Probability	Duration (hr)	Aut	ocovarian	ce
			Lag-1	Lag-2	Lag-3	(-)		Lag-1	Lag-2	Lag-3
0.1	0.009031	0.03239	0.7954	0.5828	0.4702	0.9766	1.978	0.02577	0.01888	0.01523
0.2	0.006547	0.01241	0.759	0.5425	0.446	0.9767	2.572	0.00942	0.006733	0.005535
0.3	0.005172	0.007808	0.7457	0.5079	0.3609	0.9846	1.252	0.005823	0.003966	0.002818
0.5	0.000976	0.001222	0.607	0.3403	0.1909	0.9951	1.057	0.000742	0.000416	0.000233
1	0.00371	0.006666	0.8069	0.562	0.4445	0.9875	1.324	0.005379	0.003746	0.002963
2	0.002234	0.00199	0.6753	0.4251	0.3176	0.9883	3.348	0.001344	0.000846	0.000632
4	0.001672	0.002365	0.5049	0.3322	0.2546	0.9934	1.199	0.001194	0.000786	0.000602
6	0.001794	0.001639	0.666	0.3682	0.2435	0.9894	2.067	0.001092	0.000604	0.000399
8	0.001895	0.003405	0.7228	0.4589	0.3623	0.9937	1.146	0.002461	0.001562	0.001234
12	0.005362	0.01328	0.7282	0.4399	0.3235	0.9828	1.626	0.009667	0.00584	0.004294
18	0.006113	0.01322	0.685	0.4361	0.3075	0.9829	1.58	0.009058	0.005767	0.004067
24	0.009156	0.02797	0.77	0.5403	0.3826	0.9804	1.118	0.02154	0.01511	0.0107

 Table 3.2
 Properties of Historical 6-minute Rainfall Data for station 35000 for January

The next chapter presents the details of the stochastic model used in this research.