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CHAPTER 5  
 

PARAMETER ESTIMATIONS 
 
Parameters have to be estimated separately for the binary chain, the jitter model, the 

capping technique and the seasonality incorporated variance relationship of the stochastic 

disaggregation model.  As shown in the previous chapter in section 4.1.3, the statistical 

moments of the jitter model were derived from the statistical moments of the binary 

chain. Hence the estimation of the binary chain parameters is sufficient to cater for both 

the binary chain and the jitter model. As per section 3.1 of chapter 3, the parameters for 

the stochastic disaggregation model will be estimated for regions 35, 39 and 40 in 

Queensland, Australia. It was also emphasised in section 4.1.2 in the previous chapter for 

using a constant regional monthly value of lag-1 autocorrelation, ( )Y hρ . Therefore its 

value has to be determined for Queensland.  

      

For parameter calibration, all 65 selected stations in regions 35, 39 and 40 in Queensland 

from Table 3.1 were used. Each of these stations has at least 10 years of 6-minute BOM 

observed data for all months of the year. The following Queensland map shows their 

geographic locations: 
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      Figure 5.1 Queensland Rainfall Stations 
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5.1 Binary Model Parameter Estimation for Queensland 

6-minute rainfall data of 65 stations obtained from the Bureau of Meteorology (BOM), 

Australia, were used to develop the Queensland parameters of the binary chain. For a 

given year, months with missing data were excluded. This resulted in rainfall data of 

different station-months having a different number of years of record. For the data 

analysed, the station-month number of years of data varied between 10 and 84 years. The 

monthly BOM data were analysed at 12 aggregation levels (0.1, 0.2, 0.3, 0.5, 1, 2, 4, 6, 8, 

12, 18, and 24 h). 

 

The binary model has seven parameters (β, η, and γ [a0, a1, b1, a2 and b2]) to be calibrated. 

For a given parameter set, values of β, η, and γ, and the daily dry probability, P(24), 

equation 4.2 was used to estimate parameter λ for each station-month. With these 

parameters the analytical dry probabilities for the various aggregation levels were 

obtained. The parameters were calibrated by minimising the objective function, J as: 

2
65 12 12

1 1 1

[ ( ) ( )]oij t sij t
j i t

J P h P h
= = =

= −∑∑∑   (5.1)  

where th is the timescale of aggregation level t , ( )oij tP h  and ( )sij tP h  are the observed and 

analytical dry probabilities of month i  and station j , respectively. The global 

optimisation search strategy (Duan et al., 1992) of the Bayesian Non-Linear regression 

software NLFIT (Kuczera, 1994) is used to calibrate the binary chain parameters. Table 

5.1 shows the globally optimised parameters and their corresponding standard deviations 

for individual regions. 
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Table 5.1 Regional parameters under global optimization search 
 
Parameters Region 35 Standard 

Deviation of 
Region 35 

Region 39  Standard 
Deviation of 
Region 39 

Region 40 Standard 
Deviation of 
Region 40 

β 0.400002 0.0389463 0.400000 0.0336551 0.400000 0.0175275 

η 0.751466 0.0453324 0.845788 0.0491831 0.728609 0.0225506 

a0 0.146094 0.0032701 0.123936 0.00271617 0.107513 0.0011891 

a1 0.062006 0.0020003 0.030032 0.00142998 0.026937 0.0006632 

b1 -0.01527 0.0017679 -0.01236 0.00169775 -0.01445 0.0007678 

a2 0.012224 0.0016810 -0.00585 0.00146642 -0.00342 0.0006495 

b2 -0.00999 0.0015644 -0.00999 0.00134542 -0.00349 0.0006011 

 

From the above optimisation results a “t”  statistics testing is formulated to find out the 

confidence interval of the estimated parameters. The formula of the “t”  statistics is given 

by Watson et al. (1993) as follows: 

X
t

s

n

µ−=                                                                                                           (5.2)   

Here X and 
s

n
   are the sample mean and standard error respectively that change from 

region to region. The population meanµ  has to be estimated from the sample mean. At 

95% confidence limit, the level of significance (α) is (1-0.95) i.e., 0.05. As the sample 

size varies, the degrees of freedom differ from sample to sample. Table 5.2 shows the 

sample sizes and the corresponding degrees of freedom. 

Table 5.2 Sample sizes and corresponding degrees of freedom 
 

Sampling criteria Sample names Sample size, n Degrees of Freedom, n-1 
Region 35 11 10 

Region 39 11 10 

Stations having 

monthly rainfall data 

≥  10 years Region 40 43 42 
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If the left and right bounds of the confidence limit for the population mean µ  are denoted 

as L and R respectively, their expression is (Watson et al. 1993): 

, 1
2

n

s
L X t

n
α −

= −                                                                                                 (5.3) 

, 1
2

n

s
R X t

n
α −

= +                                                                                                  (5.4) 

Using these boundary equations, the upper and lower bounds for parameters β, η, a0, a1, 

b1, a2 and b2 were calculated and plotted. There are some common ranges for some of the 

parameters which will be discussed subsequently. The boundary values of parameter β 

and parameter η are shown in Figures 5.2 and 5.3 respectively. 
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      Figure 5.2 Confidence Intervals of parameter               Figure 5.3    Confidence Intervals of parameter 
  β under global optimisation search                                   η under global optimisation search   
 with shaded area representing  
 overlapping values for all three regions 
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The shaded area in Figure 5.2 represents the overlapping values of β for all the three 

regions under consideration. With 95% confidence it can be estimated that the mean 

population value of parameter β lies within the range of 0.395 to 0.405. No such 

overlapping values were found for parameter η in Figure 5.3. However, there are 

overlapping values for parameter η between regions 35 and 40 ranging from 0.722 to 

0.736. To find out the possibility of fixing these parameters as constants over the three 

regions, correlation analyses of these parameters will be done later. 

 

As stated earlier, parameter γ is estimated for its monthly variations from a Second 

Harmonic Fourier series (Gyasi-Agyei, 1999). The globally optimised values of 

parameters a0, a1, b1, a2 and b2 are used to parameterise γ. To find out the values of these 

parameters, the same “t” statistics testing with a 95% confidence limit was performed 

again. Figures 5.4 to 5.8 depict the ranges for these parameters. 
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      Figure 5.4 Confidence intervals of a0                              Figure 5.5      Confidence intervals of a1 
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      Figure 5.6 Confidence intervals of b1                            Figure 5.7      Confidence intervals of a2  
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Figure 5.8 Confidence intervals of b2 
 

It is obvious from Figures 5.4 to 5.8 that there are no commonly identifiable ranges for 

parameters a0, a1, b1, a2 and b2. Hence the generalisation of these parameters is not 
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possible. Rather, we have to use the regionalised values for these parameters to determine 

the parameter γ.  

 

To establish the above assertion on parameters, a detailed step-by-step parameter 

separation technique by correlation analyses has been adopted. In step 1 all the 

parameters were considered as variables and the correlation coefficients between them 

were determined. Mathematically, the correlation coefficient, usually designated by “ ρ”  

for the population and “r”  for the sample, is defined as follows: 

 

Covariance between the two variables

(Standard deviation of one variable)(Standard deviation of other variable)
r =  

 

 

That is, 1

2 2

1 1

( )( )

( ) ( )

n

i i
i

n n

i i
i i

X X Y Y
r

X X Y Y

=

= =

− −
=

− −

∑

∑ ∑
                                                                 (5.5) 

The correlation coefficient can be either positive or negative within a range of -1 to +1. 

When the absolute correlation coefficient of two random variables is very close to unity 

then there is a strong correlation between them. If it is close to “0” then there is no 

correlation between the two random variables. During step 1, it was observed that there 

were strong correlations between β – η, β – a0 and η – a0. This means that if any of these 

parameters were considered as constant then the loss of accuracy in parameter estimation 

would be catered for by the other correlated parameters. The correlations between the 

other parameters were very small and therefore ignored. 
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In step 2, parameter β was considered as a constant by taking the mean population values 

as determined in the earlier “t”  testing for all three regions. At the end of this step the 

correlation between η – a0 got stronger than before for all regions indicating similar 

simulation results from a wide range of parameter space if one is taken out as a constant. 

 

In step 3, both β and η were considered as constants by taking their mean population 

value from the standard “t”  tests. At the end of this step the correlations between a0-a1, 

a0-b1, a0-a2, a0-b2, a1-b1, a1-a2, a1-b2, b1-a2, b1-b2, a2-b2 were insignificant. This suggested 

no further parameters could be isolated from the parameter space. Table 5.3 shows the 

correlation coefficients at different steps of the parameter identification process. 

                   
 
Table 5.3 Various steps of parameter Identification by correlation analyses 
 
Region Variability 

Criteria 
β – η β – a0 η – a0 a0-a1 a0-b1 a0-a2 a0-b2 

All Variable 0.9526 0.7384 0.5317 0.2863 -0.2072 -0.0161 -0.0695 

β fixed ---------            --------- -0.8377 0.5660 -0.3792 0.0958 -0.2014 
Region 

35 
β, η fixed --------- --------- ---------- 0.2046 -0.4521 -0.0879 -0.1549 

All Variable 0.9509 0.7789 0.5933 0.1917 -0.2593 -0.1460 -0.0903 

β fixed ---------- ---------- -0.7591 0.2837 -0.4480 -0.2108 -0.1607 
Region 

39 
β, η fixed ---------- ---------- ---------- 0.1175 -0.5873 -0.2775 -0.1261 

All Variable 0.9557 0.7434 0.5577 0.1806 -0.2860 -0.1273 -0.0177 

β fixed ---------- ---------- -0.7762 0.3085 -0.4718 -0.1729 -0.0611 
Region 

40 
β, η fixed ---------- ---------- ---------- 0.1281 -0.6051 -0.2379 -0.0293 

All Variable 0.9543 0.7849 0.6044 0.2014 -0.2653 -0.1167 -0.0337 

β fixed ---------- ---------- -0.779 0.346 -0.47 -0.158 -0.093 
All 

Region 
β, η fixed ---------- ---------- ---------- 0.1554 -0.6014 -0.2305 -0.0614 

 

As the numbers of parameters set fixed were increased in the step-by-step parameter 

identification process, it was found that there was little or no change in the correlation 
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among a0, a1, b1, a2 and b2. Even though parameter b1 showed a slight gradual 

improvement in its correlation with parameter a0 during the steps of parameter 

identification, this improvement was far less than expected. The highest correlation 

between b1 and a0 was achieved as -0.6051 as shown in the Table 5.3 for region 40. 

These findings validate the decision of considering parameters β and η fixed and a0, a1, 

b1, a2, b2 as regional variables to calculate parameter γ. Finally, the fitted Second 

Harmonic Fourier Series (Gyasi-Agyei, 1999) of equation 4.1 was used to calculate γ. 

Figure 5.9 shows the patterns of variations of the parameter γ for the regions of 35, 39, 40 

and all three regions together. Since region 40 has more than twice the sample size of 

regions 35 and 39 combined, the “all region” curve is closer to that of region 40.  
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      Figure 5.9 Seasonal variations of parameter γ for all regions 
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The tabulated γ values are given in Table 5.4. 

Table 5.4 γ values for all months 
 

Months Region 35 Region 39 Region 40 All Regions 

Jan 0.188866 0.142512 0.116179 0.123322 
Feb 0.148543 0.132113 0.104758 0.10955 
Mar 0.118221 0.125873 0.09437 0.098014 
Apr 0.104135 0.116746 0.084436 0.087905 
May 0.099269 0.103217 0.076689 0.079829 
Jun 0.096026 0.093668 0.075638 0.077747 
Jul 0.097164 0.099375 0.084929 0.086117 
Aug 0.11317 0.122771 0.103 0.1048 
Sep 0.148654 0.15283 0.122576 0.12699 
Oct 0.19222 0.172778 0.135048 0.142844 
Nov 0.221403 0.173311 0.136145 0.14601 
Dec 0.219483 0.159042 0.128008 0.137437 

 

Since the prediction of the dry probability is the driving factor for the estimation of all the 

analytical model parameters as per equations 4.2 through 4.5, the corresponding dry 

probabilities for all months and all aggregation levels are calculated. There are two error 

statistics: the average absolute percentage error E1 and maximum absolute percentage 

error E2, which are defined as: 

0

1
01

1 ( ) ( )
(%) 100

( )

m n
a

h

P h P h
E

m n P h

×

=

=

−
× ∑                                                                         (5.6) 

0

2
1, 0

( ) ( )
(%) max 100

( )

a

h m n

P h P h
E

P h= ×

−=                                                                            (5.7) 

There are also two different criteria for calculating E1 and E2 statistics: on monthly basis 

and on aggregation level basis. If these are calculated for months, then “n”  is the number 

of aggregation levels. On the other hand, if the error statistics are calculated for 

aggregation levels, then “n”  is the number of months. “m”  is the total number of stations 

in the region. 0( )P h  and ( )aP h  are observed and analytical dry probabilities, 

respectively. 0( )P h  is calculated from the equation 3.6 and ( )aP h is calculated from 

equation 4.2. Figure 5.10 shows the comparative error statistics 1E  and 2E   amongst 

regions 35, 39, 40 and all regions for all aggregation levels and all months. In each case β 
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and η were fixed and γ was calculated from the Second Harmonic Fourier Series (Gyasi-

Agyei,1999). 

0.00

0.50

1.00

1.50

2.00

E
1_RG35

(%)

E
1_RG39

(%)

E
1_RG40

(%)

E
1_ALL

(%)

0.1 1 10

E
1(%

)

Aggregation Level (hr)

0.40

0.80

1.20

1.60

2.00

JA
N

FE
B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

E
1_RG35

(%)

E
1_RG39

(%)

E
1_RG40

(%)

E
1_ALL

(%)

E
1(%

)

0

5

10

15

20

0.1 1 10

E
2_RG35

(%)

E
2_RG39

(%)

E
2_RG40

(%)

E
2_ALL

(%)

E
2(%

)

Aggregation Level (hr)

0

5

10

15

20

JA
N

FE
B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

E
2_RG35

(%)

E
2_RG39

(%)

E
2_RG40

(%)

E
2_ALL

(%)

E
2(%

)

 

      Figure 5.10 Comparison of 1E  and 2E statistics for all months and all aggregation levels 

 

From the comparison it is evident that the average error statistic 1E  is less than 1.2% for 

both criteria when all the stations are taken together. The maximum error statistic 2E  is 

highest (15%) for the 6-hour aggregation level and during the month of February. A 
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further investigation of the histograms of each of the maximum error statistic 2E  for all 

stations at the 6 hour aggregation level and for the month of February has been carried 

out. Figure 5.11 shows both histograms.     
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      Figure 5.11 Histograms showing range of 2E  for all stations at 6 hour aggregation and in the  

 month of February 
 

From the histograms of Figure 5.11 it is evident that the maximum errors 2E  of 15% at 

the two worst case scenarios constitute only 1% of the total frequency. Hence, it is 

necessary to see the individual absolute errors for all data points and find their 

distribution in a histogram format for all stations to see whether this is an isolated 

phenomenon.   

 

The individual absolute error is defined as: 

0

0

( ) ( )
100

( )

P h Pa h
E

P h

−′ = ×                                                                                      (5.8) 

where 0( )P h  and ( )aP h  are observed and analytical dry probabilities, respectively. 
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      Figure 5.12 Histogram of the individual error statistic E′  for all stations 

 

The distribution of absolute error E′  in Figure 5.12 is clearly exponential which indicates 

the maximum error statistics 2E  of 15% at the two worst case scenarios is not a driving 

factor in the model prediction of the dry probability. These are just some isolated cases 

caused by one or two isolated stations which require more observations. Since this 

research is limited to the rainfall data from the Bureau of Meteorology, our observation is 

also restricted to the same. As the bulk of the absolute errors ranges from 0 to 1.5, the 

model prediction of the dry probability is rather controlled by the average error 

statistics 1E .  

 

Up to this stage model parameters β and η are considered fixed and a0, a1, b1, a2 and b2 

are considered variable. The1E , 2E  and E′  statistics are based on this arrangement of 

model parameters. Since we are looking to reduce the error statistics of the dry 

probability prediction as well as trying to reduce the number of parameters, three more 
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arrangements of parameters have been chosen. The error statistics are calculated again for 

the following arrangements: 

 

• All the parameters β, η, a0, a1, b1, a2 and b2 are taken as variables for the joint 

calibration of regions 35, 39 and 40. 

• Parameters a2 and b2 are taken out of the parameter space and the remaining 

parameters β, η, a0, a1, b1 are taken as variables for the joint calibration of regions 

35, 39 and 40. 

•  Parameters a1 and b1 are taken out of the parameter space and the remaining 

parameters β, η, a0, a2, b2 are taken as variables for the joint calibration of regions 

35, 39 and 40. 

 

Figure 5.13 shows the comparison of the1E , 2E  error statistics for all of the 

abovementioned parameter arrangements. 
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      Figure 5.13 Comparison of 1E and 2E error statistics for all months and all aggregation levels  

 under different sets of parameter arrangements 
 

From the comparison it is seen that the exclusion of parameters a2 and b2 from the 

harmonic components of the parameter γ produces similar error statistics as shown earlier 

in Figure 5.10 for the joint calibration of all three regions. On the other hand, exclusion of 
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parameters a1 and b1 does not improve the error statistics a great deal as compared to 

Figure 5.10.  

 

These findings open up the possibility of reducing of the number of parameters. Instead 

of carrying out the joint calibration with parameters β and η as fixed and a0, a1, b1, a2, b2 

as regional variables to calculate parameter γ, we can now rely on the joint calibration 

with parameters β, η, a0, a1 and b1 as variables with similar results. In order to improve 

the error statistics and reduce the number of parameters further, the isolated station 

causing the maximum error of 15% in both Figure 5.10 and Figure 5.13 is taken out of 

the joint calibration. The error statistics are calculated again for the following 

arrangements: 

• All the parameters β, η, a0, a1, b1, a2 and b2 are taken as variables for the joint 

calibration of regions 35, 39 and 40 while the isolated station causing maximum 

error of 15% is omitted. This is a 7 parameter arrangement. 

• Parameters a2 and b2 are taken out of the parameter space and the remaining five 

parameters β, η, a0, a1, b1 are taken as variables for the joint calibration of regions 

35, 39 and 40 while the isolated station causing maximum error of 15% is 

omitted.  

• Parameters a1, b1, a2 and b2 are taken out of the parameter space and the 

remaining three parameters β, η and a0  are taken as variables for the joint 

calibration of regions 35, 39 and 40 while the isolated station causing maximum 

error of 15% is omitted. 

Figure 5.14 shows the comparison of the1E , 2E  error statistics for all of the 

abovementioned parameter arrangements. 

 



   47 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 1 10

E
1
(%), 7 parameter

E
1
(%), 5 parameter

E
1
(%), 3 parameter

E
1(%

)

Aggregation Level (hr)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

E
1
(%), 7 parameter

E
1
(%), 5 parameter

E
1
(%), 3 parameter

E
1(%

)
 

 

0

2

4

6

8

10

0.1 1 10

E
2
(%), 7 parameter

E
2
(%), 5 parameter

E
2
(%), 3 parameter

E
2(%

)

Aggregation Level (hr)

1

2

3

4

5

6

7

8

9

JA
N

F
E

B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

E
2
(%), 7 parameter

E
2
(%), 5 parameter

E
2
(%), 3 parameter

E
2
(%

)

 

      Figure 5.14 Comparison of 1E and 2E  error statistics for all months and all aggregation levels  

 under different sets of parameter arrangements while the isolated station  
 causing maximum error is omitted 

 

It is now evident from Figure 5.14 that the use of three parameters namely, β, η and a0  

gives a maximum error of 1.1% and 7% for 1E and 2E  respectively. This is a significant 

improvement in the error statistics as well as a significant reduction of the number of 

parameters to calibrate. 



   48 
 

The order of harmonics for parameter γ  was investigated for first (7 parameter), second 

(5 parameter) and zero (3 parameter) orders for the Queensland regions by examining the 

absolute percentage error defined in equation 5.8. Figure 5.15 shows that there is no 

significant difference in the error statistics for these three arrangements with an absolute 

error being less than 10% for a non-exceedance probability of 99.9%.  
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      Figure 5.15 Absolute error plots for different order of harmonics of parameter γ   
 

As it is evident from Figure 5.15 that using 3 parameters (i.e. zero order harmonics for 

parameterγ ), the seasonal effect is absent in parameterγ . Hence γ  will simply refer to 

0a  hereafter. The distribution of the absolute error with the zero order harmonics is 

shown in Figure 5.16. 
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      Figure 5.16 Absolute error distributions for zero order harmonics of parameter γ    
 

   

The three parameter arrangement for the joint calibration of regions 35, 39 and 40 in the 

State of Queensland was put in comparison with an Australia wide joint parameter 

calibration performed by Gyasi-Agyei and Mahbub (2007). The traditional Multinormal 

Parameter Approximation and the Monte Carlo – based approximation algorithm known 

as Metropolis Algorithm (Kuczera and Parent, 1998) were used for calibration. The Duan 

et al. (1992) shuffled complex evolution of the global probabilistic search option of the 

NLFIT Bayesian non-linear regression software (Kuzcera, 1994) was employed to refine 

the posterior distribution of the multinormal approximation. The result of the calibrated 

parameters for QLD regions is given in Table 5.5. 
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Table 5.5 Statistics of calibrated parameters by multinormal approximation and metropolis      

algorithm for QLD regions 
 

Multinormal Approximation Metropolis 
Parameter 

Mean 
Standard 
Deviation 

Mean 
Standard 
Deviation 

β  0.200 0.011 0.166 0.010 

η  0.510 0.013 0.473 0.012 

γ  0.090 0.002 0.082 0.003 
 
For the purpose of comparison, the Australia wide parameter values are reproduced from 

Gyasi-Agyei and Mahbub (2007) in Table 5.6. 

 
Table 5.6 Statistics of calibrated parameters by multinormal approximation and metropolis 

algorithm for Australia wide regions 
 

Multinormal Approximation Metropolis 
Parameter 

Mean 
Standard 
Deviation 

Mean 
Standard 
Deviation 

β  
0.273 0.012 0.278 0.013 

η  0.746 0.019 0.756 0.022 

γ  0.092 0.002 0.093 0.002 

 

From Tables 5.5 and 5.6 it is evident that there is not much difference in the parameter 

calibration by the multinormal approximation and the metropolis algorithm. To see if 

there is any significant change in their posterior moment distributions, histogram analyses 

were carried out for Queensland regions and compared with those of Australia wide 

results from Gyasi-Agyei and Mahbub (2007). Figure 5.17 shows the histograms for both 

Queensland regions and the Australia wide stations. 
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      Figure 5.17 Histograms of the posterior mean values for the QLD regions 
 

The posterior distribution of mean is nearly normal for both Queensland regions and the 

whole of Australia as shown in Figure 5.17. This is the reason why there were little 

differences between the means of calibrated parameters in Tables 5.5 and 5.6. 
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The covariance between parameters  and η β η γ β γ− , − −  were also analysed for 

Queensland regions and compared to that of Australia wide results from Gyasi-Agyei and 

Mahbub (2007). Figure 5.18 shows the correlations between the above parameters. 
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      Figure 5.18 Covariance between parameters  and η β η γ β γ− , − −  
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Even though strong correlations are evident in Figure 5.18 individually for both 

Queensland regions and the Australia wide dataset parameters, the Queensland region fell 

outside the Australia wide dataset. This suggests that the model parameters have to be 

regionalised. Therefore, the parameters of Table 5.5 will be used as the binary chain 

parameters for the Queensland region of Australia. 

5.2 Variance Relationship Parameter Estimation for Queensland 

This research has adopted the empirical scaling relationship between the daily variance, 

2 (24)Yσ   and the fine timescale variance2 ( )
kY hσ  suggested by Gyasi-Agyei (1999). Gyasi-

Agyei and Mahbub (2007) established the empirical scaling relationship between daily 

variance and the fine scale variance (6-minute) for selected sites throughout Australia as: 

 

2 2 0.913(0.1) 0.000272 (24)Y Yσ σ=                       (5.9)   

No apparent seasonality was observed in this data set. To find out whether the data-

lengths have effects on similar variance relationship for Queensland, the pluviograph 

stations were ranked according to their monthly data lengths. The variance relationships 

were then separately established between the top and bottom 50% of the data to see if 

there is any change in the spread of the station-months from the fitted power curves. The 

following two figures show the separately established variance relationship for the ranked 

data in Queensland. 
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      Figure 5.19 Variance relationship for the top 50% ranked station-months in Queensland 
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       Figure 5.20 Variance relationship for the bottom 50% ranked station-months in Queensland 
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It is evident from Figures 5.19 and 5.20 that spread of the station-months from the fitted 

power curves does not really vary with the data lengths. Hence it was decided that the 

data lengths of different months did not influence this variance relationship. 

 

The scaling relationship for Queensland regions was compared to that of Australia wide. 

Figure 5.21 shows that there is a subtle difference between the regionalised fit and the 

Australia wide fit power curves. Both display significant scatter of many station months 

from the fitted power curves. To minimise the scatters, seasonality was investigated for 

the relationship between 6-minute and daily variances in the selected three regions 

(region 35, 39 and 40) of Queensland. 
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      Figure 5.21 Fitted power curves between six-minute and 24-hour variances in Queensland  
 and Australia wide 
 

A distinctive pattern of scaled 6-minute variance to 24-hour variance with the 24-hour 

variance was observed for the regions 35, 39 and 40 in Queensland. Figure 5.22 shows 

this pattern for both summer and winter seasons. 
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      Figure 5.22 Comparison of seasonal patterns of scaled 6-minute variance with 24-hour variance  
 in the selected Queensland regions 

 

The distinctive pattern of Fig. 5.22 does not fully reveal how the individual months are 

affecting the variance relationship of Figure 5.21. Hence an investigation of 6-minute 

variance of each month in the selected Queensland regions is performed. The following 

figures show the monthly variance patterns for Queensland. 
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      Figure 5.23 Comparison of QLD October           Figure 5.24 Comparison of QLD November 
patterns with whole QLD                        patterns with whole QLD station 

 station months                                                             months                                                                                          
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      Figure 5.25 Comparison of QLD December              Figure 5.26     Comparison of QLD January  
 patterns  with whole QLD station       patterns with whole QLD                                                                             

months                                                                               station months  
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      Figure 5.27 Comparison of QLD February                 Figure 5.28                     C omparison of QLD March  
 patterns  with whole QLD                                                   patterns with whole QLD  
 station months           station months 

 

Figures 5.23 to 5.28 show that there exists a specific downward shift pattern in the 

variance relationship between 6-minute and 24-hour for months from October to March 
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in Queensland regions. The following figures show the variance patterns for months from 

April to September in the Queensland regions.  

10-4

10-3

10-2

10-1

100 101 102 103

Selected Queensland regions
for all station-months
Selected Queenland regions for April

6
-m

in
ut

e
 v

a
ri

an
ce

 (
m

m  
2  )

24-hour variance (mm  2 )

10-4

10-3

10-2

10-1

100 101 102 103

Selected Queensland regions
for all station-months
Selected Queenland regions for May

6
-m

in
ut

e
 v

ar
ia

n
ce

 (
m

m  
2  )

24-hour variance (mm  2 )
 

      Figure 5.29 Comparison of QLD April                   Figure 5.30     Comparison of QLD May            
 patterns  with whole QLD        patterns with whole QLD                                 

station months                                                                 station months                                            
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      Figure 5.31 Comparison of QLD June                    Figure 5.32          Comparison of QLD July  
 patterns with whole QLD                       patterns with whole QLD                  

station months                                                                   station months                                       
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      Figure 5.33 Comparison of QLD August                Figure 5.34    Comparison of QLD September 
 patterns with whole QLD                                          patterns with whole QLD  

 station months     station months                                        
   

 

Figures 5.29 to 5.34 show that the downward shift in the variance relationship continues 

in the winter months and at the end of the season it starts reversing back to the top 

(Figures 5.34 and 5.23). These findings suggested that the use of a single variance 

relationship power curve between the 6-minute and 24-hour variance for the whole of 

Queensland might cause problems in simulating the fine scale variances in Queensland. 

Hence, the seasonal approach associated with the variance relationship proposed by 

Mahbub et al. (2007) is adopted in this research. This seasonal approach has been 

described in section 4.1.6 of the previous chapter. As per equations 4.21 to 4.23, this 

approach incorporates parameter a  comprising of coefficients 0 1,a a  and 2a  and 

parameter b  comprising of coefficients 0 1,b b  and 2b  into the disaggregation model. 

Parameter a  is defined as the scaling constant and parameter b  is defined as the scaling 

exponent in equation 4.21. The global optimisation search strategy (Duan et al., 1992) of 

the Bayesian Non-Linear regression software NLFIT (Kuczera, 1994) is used again to 
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determine these seasonal coefficient values for the selected Queensland regions. Table 

5.7 shows the optimised coefficients for Queensland regions determined by NLFIT. 

Table 5.7 Seasonal parameter set for Queensland 
 

Seasonal coefficients 
Optimised values 

for Queensland 

0a  0.001329 

1a  0.0007735 

2a  0.0004887 

0b  0.5943 

1b  -0.007314 

2b  -0.06866 

 

Figures 5.35 and 5.36 show the seasonal variations of the scaling constant aand the 

exponent b for the Queensland regions. 
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       Figure 5.35 Seasonal variation of the scaling constant a for Queensland 
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      Figure 5.36 Seasonal variation of the scaling exponent b for Queensland  
 

The scaling constant a   and the exponentb  are determined by six seasonal coefficients: 

0 1 2 0 1 2, , , ,  and a a a b b b according to equations 4.22 and 4.23. 

 

The following figure shows the monthly variation of the downscaling relationship of 

equation 4.21 for four equally spaced months in Queensland after the inclusion of 

seasonality. 
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      Figure 5.37 Seasonal variation of the variance relationship for Queensland 
 

From Figure 5.37 it is more evident that the variance relationship for the 6 minute and 24 

hour variances for the Queensland regions follows a clear seasonal pattern. This research 

will investigate the simulation results of variance by the disaggregation model using both 

seasonal and non-seasonal approach in its variance relationship. For the non-seasonal 

approach, either the Australia wide parameter values or the Queensland parameter values 

of Figure 5.21 can be used for Queensland. For the seasonal approach, values from Table 

5.7 will be used for Queensland. 

5.3 Capping Parameter Estimation for Queensland 

The capping technique, i.e. placing an upper limit on the simulated timescale rainfall 

depths, is required to tackle the possible overestimation of the simulated timescale 

rainfall depth during the disaggregation process. The capping value is allowed to vary 

depending on the daily depth between the rainfall stations. According to equation 4.20 of 
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the previous chapter, the capping parametersAandB are to be estimated for each stations 

in Queensland regions. Figures 5.38 to 5.40 represent this capping relationship for 6-

minute timescale at Dingo, Rockhampton and Brisbane which are situated in regions 35, 

39 and 40 in Queensland, respectively. The parameter values are calculated from the 

fitted capping equations of the corresponding stations. 
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      Figure 5.38 Fitted Capping relationship at Dingo, Queensland Australia 
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      Figure 5.39 Fitted Capping relationship at Rockhampton, Queensland Australia 
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      Figure 5.40 Fitted Capping relationship at Brisbane, Queensland Australia 
      
No seasonality is observed in this scaled 6-minute depth versus daily depth relationship 

as the months (for example, December in Fig. 5.38) are randomly distributed. The 

logarithmic transformed daily depths were ranked and divided into 30 groups (bins) of 
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equal intervals and the mean and the standard deviation of the logarithmic transformed 

scaled 6-minute maximum depths within each bin were estimated. During the simulation 

for Queensland regions, each wet day’s capping value is estimated by randomly drawing 

a number from a normal distribution of the binned log[scaled 6-minute maximum depth 

(%)] points with the mean estimated by equation 4.20 and the standard deviation set to 

the maximum of the bins’ standard deviation. The following figures show that normal 

distribution can be approximately estimated for the bins in all three regions: 
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      Figure 5.41 Histogram of log[scaled 6-min (%)]       Figure 5.42     Histogram of log[scaled 6-                
 at Dingo; bin range: 0.74 - 0.877                                     min(%)]at Dingo; bin range: 
                                                                                                     1.014 - 1.151    
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      Figure 5.43 Histogram of log[scaled 6-min (%)]           Figure 5.44   Histogram of log[scaled 6- min(%)]  

at Rockhampton; bin range: 0.44 - 0.58                           at Rockhampton; bin range: 0.73 –  
                                                                                                                             0.87                                

0

50

100

150

0.2 0.7 1.1 1.6 2.0

log (daily depth) range : 0.5460 - 0.6958

fr
eq

ue
nc

y

log (six-min max/daily) [log(%)]

Brisbane
mean: 1.31
st.dev: 0.27

0

50

100

150

0.3 0.8 1.4 2.0

log (daily depth) range : 0.8456 - 0.9953

fr
eq

ue
nc

y

log (six-min max/daily) [log(%)]

Brisbane
mean: 1.22
st.dev: 0.29

 
     Figure 5.45 Histogram of log[scaled 6-min (%)]         Figure 5.46   Histogram of log[scaled 6- min(%)] 

at Brisbane; bin range: 0.55 - 0.70                                     at Brisbane; bin range: 0.85 – 0.99 
 

Figures 5.41 to 5.46 validate the approximation of normal distribution for the binned 

log[scaled 6-min(%)] points in all three sites at the selected regions of Queensland. From 

this site-specific normal distribution, the maximum capping value for the simulated 

rainfall depth will be randomly chosen by the model. Table 5.8 shows the site- specific 
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capping parameter values for all 65 selected stations in the three regions (35, 39 and 40) 

in Queensland. 

Table 5.8 Capping parameter values for selected Queensland stations 
 

BOM 

Pluviometer-

station ID  

Parameter 

A  

Parameter 

B  

Standard 

Deviation 

BOM 

Pluviometer-

station ID 

Parameter 

A  

Parameter 

B  

Standard 

Deviation 

35000 1.52 0.33 0.37 40112 1.40 0.23 0.40 

35025 1.48 0.28 0.37 40126 1.64 0.42 0.32 

35029 1.39 0.23 0.42 40135 1.46 0.30 0.49 

35059 1.43 0.27 0.39 40152 1.48 0.29 0.40 

35065 1.46 0.26 0.38 40160 1.59 0.42 0.35 

35069 1.58 0.36 0.36 40178 1.43 0.29 0.39 

35070 1.44 0.29 0.40 40180 1.39 0.27 0.45 

35090 1.60 0.45 0.45 40189 1.26 0.37 0.37 

35104 1.50 0.29 0.34 40192 1.50 0.46 0.31 

35147 1.55 0.33 0.38 40197 1.54 0.40 0.38 

35267 1.50 0.32 0.36 40214 1.56 0.38 0.33 

39006 1.40 0.25 0.36 40222 1.53 0.39 0.38 

39069 1.38 0.26 0.40 40223 1.59 0.44 0.36 

39070 1.44 0.30 0.37 40241 1.56 0.44 0.35 

39083 1.42 0.23 0.37 40265 1.51 0.33 0.33 

39090 1.57 0.42 0.35 40282 1.56 0.40 0.31 

39123 1.55 0.32 0.33 40308 1.48 0.38 0.36 

39128 1.61 0.38 0.32 40312 1.50 0.37 0.37 

39140 1.46 0.33 0.38 40406 1.54 0.38 0.35 

39297 1.50 0.26 0.41 40458 1.47 0.32 0.35 

39303 1.61 0.36 0.37 40459 1.43 0.32 0.34 

39314 1.71 0.43 0.31 40460 1.50 0.34 0.35 

40004 1.54 0.38 0.50 40461 1.41 0.32 0.40 

40014 1.51 0.38 0.41 40469 1.42 0.30 0.38 



   68 
 

BOM 

Pluviometer-
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(contd.) 
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A  

(contd.)  
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B  
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Deviation 

(contd.) 

BOM 

Pluviometer-
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(contd.) 

Parameter 

A  

(contd.)  

Parameter 

B  

(contd.)  

Standard 

Deviation 

(contd.) 

40019 1.31 0.20 0.47 40496 1.52 0.34 0.32 

40059 1.54 0.37 0.31 40537 1.56 0.30 0.29 

40062 1.44 0.39 0.35 40584 1.53 0.37 0.31 

40063 1.49 0.38 0.37 40606 1.57 0.40 0.37 

40082 1.46 0.29 0.36 40609 1.70 0.46 0.33 

40093 1.56 0.41 0.37 40659 1.49 0.37 0.36 

40094 1.48 0.39 0.40 40677 1.46 0.26 0.38 

40106 1.57 0.43 0.37 40715 1.56 0.38 0.33 

40111 1.50 0.34 0.39     

 

Table 5.8 enables the use of the three parameter stochastic disaggregation model at all the 

selected stations around Queensland for the capping purposes. 

5.4 Estimation of Autocorrelation for Queensland 

For fine timescale simulation purposes, Gyasi-Agyei (1999) and Gyasi-Agyei and 

Mahbub (2007) suggested the use of a fixed autocorrelation, ( )Y hρ  for Australia wide 

due to the presence of strong correlation between higher lag autocorrelation and lag-1 

autocorrelation. The Australia wide 6-minute lag-1 autocorrelation is suggested as 0.71 

by Gyasi-Agyei and Mahbub (2007). For Queensland, the monthly mean values of the 6 

minute lag-1 autocorrelation did not show any seasonality (Figure 5.47). A constant value 

of 0.73 was observed for Queensland for almost all the year round. This research will 

investigate the model performance using both the Australia wide autocorrelation value of 

0.71 and the regionalised Queensland value of 0.73 for 6-minute timescale simulation. 
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      Figure 5.47 Monthly autocorrelation in Queensland 
 

The next chapter will discuss on the application of the stochastic model and its 

performance. 

 

 

 

 

 

    

 

 
 


