CHAPTER 5

PARAMETER ESTIMATIONS

Parameters have to be estimated separately fobittagy chain, the jitter model, the
capping technique and the seasonality incorponzednce relationship of the stochastic
disaggregation model. As shown in the previouptdrain section 4.1.3, the statistical
moments of the jitter model were derived from tha&tistical moments of the binary
chain. Hence the estimation of the binary chairapeaters is sufficient to cater for both
the binary chain and the jitter model. As per s8cB8.1 of chapter 3, the parameters for
the stochastic disaggregation model will be eseahafor regions 35, 39 and 40 in
Queensland, Australia. It was also emphasiseddtiose4.1.2 in the previous chapter for

using a constant regional monthly value of lag-toeorrelationo, (h). Therefore its

value has to be determined for Queensland.

For parameter calibration, all 65 selected statinomggions 35, 39 and 40 in Queensland
from Table 3.1 were used. Each of these statioasah&ast 10 years of 6-minute BOM
observed data for all months of the year. The walhg Queensland map shows their

geographic locations:
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5.1 Binary Model Parameter Estimation for Queenslad

6-minute rainfall data of 65 stations obtained fridra Bureau of Meteorology (BOM),
Australia, were used to develop the Queenslandnpeteas of the binary chain. For a
given year, months with missing data were excluddds resulted in rainfall data of
different station-months having a different numioéryears of record. For the data
analysed, the station-month number of years of dati@d between 10 and 84 years. The
monthly BOM data were analysed at 12 aggregatieeldg0.1, 0.2, 0.3, 0.5, 1, 2, 4, 6, 8,

12, 18, and 24 h).

The binary model has seven parametg@rs,(andy [ao, &, b1, & andby]) to be calibrated.
For a given parameter set, valuesppf;, andy, and the daily dry probability?(24),
equation 4.2 was used to estimate paramétéor each station-month. With these
parameters the analytical dry probabilities for therious aggregation levels were

obtained. The parameters were calibrated by mimgithe objective function] as:

65 12 12

3= 2 IR (M -R(WI (5.1)

j=li=lt=1

where h is the timescale of aggregation levelP, (h) and R, (h) are the observed and

i
analytical dry probabilites of month and station j, respectively. The global

optimisation search strategy (Duan et al., 1992)hef Bayesian Non-Linear regression
software NLFIT (Kuczera, 1994) is used to calibrde binary chain parameters. Table
5.1 shows the globally optimised parameters anidl toeresponding standard deviations

for individual regions.
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Table 5.1 Regional parameters under global optimizéon search

Parameters Region 3% Standard Region 39 | Standard Region 40 | Standard
Deviation of Deviation of Deviation of
Region 35 Region 39 Region 40

i 0.400002| 0.0389463 | 0.4000000.0336551 0.4000000.0175275

n 0.751466| 0.0453324 | 0.8457880.0491831 0.72860P0.0225506

ao 0.146094| 0.0032701 | 0.1239360.00271617 | 0.1075130.0011891

ay 0.062006| 0.0020003 | 0.0300320.00142998 | 0.0269370.0006632

b, -0.01527| 0.0017679| -0.01236 0.00169715 -0.01445000678

a 0.012224] 0.0016810 | -0.0058% 0.00146642 -0.00342 0.0006495

b, -0.00999| 0.0015644| -0.00999 0.00134542 -0.00849006011

From the above optimisation resultsta statistics testing is formulated to find out the
confidence interval of the estimated parameters. fohmula of thét” statistics is given

by Watson et al. (1993) as follows:

_X-u
t="o (5.2)

/n

Here X and — are the sample mean and standard error resplgcthat change from

Jn
region to region. The population meanhas to be estimated from the sample mean. At
95% confidence limit, the level of significan¢e) is (1-0.95) i.e., 0.05. As the sample
size varies, the degrees of freedom differ from@anto sample. Table 5.2 shows the

sample sizes and the corresponding degrees ofoimreed

Table 5.2 Sample sizes and corresponding degreed@edom

Sampling criteria Sample names Sample size, n BegrEFreedom, n-1
Stations having Region 35 11 10
monthly rainfall data Region 39 11 10
= 10 years Region 40 43 42
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If the left and right bounds of the confidence tifiair the population meagp are denoted

as L and R respectively, their expression is (Watstaal. 1993):

S S
L=X-t, — 5.3
%,n—l\/ﬁ ( )

S s
R= X+t — (5.4)

E,n—l n

Using these boundary equations, the upper and lbaends for parametefs », a, &,
b;, & andb, were calculated and plotted. There are some comamgges for some of the
parameters which will be discussed subsequentlg. @dundary values of parameger

and parametey are shown in Figures 5.2 and 5.3 respectively.
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The shaded area in Figure 5.2 represents the ppanta values ofp for all the three
regions under consideration. With 95% confidenceaih be estimated that the mean
population value of parametgt lies within the range of 0.395 to 0.405. No such
overlapping values were found for parametein Figure 5.3. However, there are
overlapping values for parametgrbetween regions 35 and 40 ranging from 0.722 to
0.736. To find out the possibility of fixing theparameters as constants over the three

regions, correlation analyses of these parametdirbendone later.

As stated earlier, parameteris estimated for its monthly variations from a Gwt
Harmonic Fourier series (Gyasi-Agyei, 1999). Theobglly optimised values of
parametersy, a;, by, & andb, are used to parameterigelo find out the values of these
parameters, the sami® statistics testing with a 95% confidence limit weesformed

again. Figures 5.4 to 5.8 depict the ranges fadlparameters.
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It is obvious from Figures 5.4 to 5.8 that there ao commonly identifiable ranges for

parametersay, ai, b, & andb,. Hence the generalisation of these parameterstis n
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possible. Rather, we have to use the regionaliakees for these parameters to determine

the parameter.

To establish the above assertion on parametersetailaetl step-by-step parameter
separation technique by correlation analyses ha sdopted. In step 1 all the
parameters were considered as variables and thelatan coefficients between them
were determined. Mathematically, the correlatioeffioient, usually designated By”

for the population antt” for the sample, is defined as follows:

[ = Covariance between the two variables
(Standard deviation of one variable)(&lard deviation of other variabl

> (X - XY~
Thatis,r = —= (5.5)

\/i(xi - XYY

i=1
The correlation coefficient can be either positirenegative within a range of -1 to +1.
When the absolute correlation coefficient of twadam variables is very close to unity
then there is a strong correlation between thenit i close to “0” then there is no
correlation between the two random variables. Qustep 1, it was observed that there
were strong correlations betwegr-7, f — & andn — &. This means that if any of these
parameters were considered as constant then thefl@ccuracy in parameter estimation
would be catered for by the other correlated patarseThe correlations between the

other parameters were very small and thereforeregho
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In step 2, parametg¢rwas considered as a constant by taking the megamatemn values
as determined in the earli&¥ testing for all three regions. At the end of thisp the
correlation betweem — & got stronger than before for all regions indicgtsimilar

simulation results from a wide range of paramepaics if one is taken out as a constant.

In step 3, bothp andy were considered as constants by taking their npegulation
value from the standard’ tests. At the end of this step the correlationsvbenag-a;,
ao-b1, av-ay, -y, a-by, &-ap, a-by, bh-ay, bi-by, a-b, were insignificant. This suggested
no further parameters could be isolated from tharpater space. Table 5.3 shows the

correlation coefficients at different steps of ga@ameter identification process.

Table 5.3 Various steps of parameter Identificatiorby correlation analyses

Region | Variability p-n p—a n—a Aoy ag-by a0-a ag-by
Criteria
All Variable | 0.9526 0.7384 0.5317 0.2863 -0.20712 .0161 | -0.0695
Region
p fixed -0.8377 | 0.5660 -0.3792| 0.0958 -0.2014
35
B, n fixed 0.2046 -0.45P | -0.0879 | -0.1544
All Variable | 0.9509 0.7789 0.5933 0.1917 -0.2593 .1460 | -0.0903
Region
p fixed -0.7591 | 0.2837 -0.4480 -0.2108 | -0.1607
39
B, n fixed 0.1175 -0873 | -0.2775 | -0.1261
All Variable | 0.9557 0.7434 0.5577 0.1806 -0.2860 .1203 | -0.0177
Region
p fixed -0.7762 | 0.3085 -0.4718 -0.1729 | -0.0611
40
B, n fixed 0.1281 -0851 | -0.2379 | -0.0293
All Variable | 0.9543 0.7849 0.6044 0.2014 -0.2653 .1187 | -0.0337
All
B fixed -0.779 0.346 -0.47 -8 -0.093
Region
B, n fixed 0.1554 -0614 | -0.2305 | -0.0614

As the numbers of parameters set fixed were inetkas the step-by-step parameter

identification process, it was found that there Wtke or no change in the correlation
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among ap, &, b1, & andb,. Even though parametds; showed a slight gradual
improvement in its correlation with parameteg during the steps of parameter
identification, this improvement was far less thexpected. The highest correlation
betweenb; and ay was achieved as -0.6051 as shown in the Tabldds.Begion 40.
These findings validate the decision of considepagameterg andy fixed anday, ai,

b;,, &, » as regional variables to calculate parametefFinally, the fitted Second
Harmonic Fourier Series (Gyasi-Agyei, 1999) of d¢gue4.1 was used to calculage
Figure 5.9 shows the patterns of variations ofpa@ametep for the regions of 35, 39, 40
and all three regions together. Since region 40rhase than twice the sample size of

regions 35 and 39 combined, the “all region” cusreloser to that of region 40.
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The tabulateg values are given in Table 5.4.

Table 5.4 vy values for all months

Months Region 35 Region 39 Region 40 All Regions
Jan 0.188866 0.142512 0.116179 0.123322
Feb 0.148543 0.132113 0.104758 0.10955
Mar 0.118221 0.125873 0.09437 0.098014
Apr 0.104135 0.116746 0.084436 0.087905
May 0.099269 0.103217 0.076689 0.079829
Jun 0.096026 0.093668 0.075638 0.077747
Jul 0.097164 0.099375 0.084929 0.086117
Aug 0.11317 0.122771 0.103 0.1048
Sep 0.148654 0.15283 0.122576 0.12699
Oct 0.19222 0.172778 0.135048 0.142844
Nov 0.221403 0.173311 0.136145 0.14601
Dec 0.219483 0.159042 0.128008 0.137437

Since the prediction of the dry probability is tréving factor for the estimation of all the

analytical model parameters as per equations 4dugh 4.5, the corresponding dry
probabilities for all months and all aggregatiovells are calculated. There are two error
statistics: the average absolute percentage &ir@nd maximum absolute percentage

errorE,, which are defined as:

o1 @iPo(h)- Pa(h)|
Ei(/o)_mx n%ﬂ ¥ |1oo (5.6)
E, (%)= max %&;ﬁ(”‘ 10( (5.7)

There are also two different criteria for calcuigtE; andE; statistics: on monthly basis
and on aggregation level basis. If these are tiedlfor months, them” is the number

of aggregation levels. On the other hand, if theorestatistics are calculated for
aggregation levels, thén” is the number of month&n” is the total number of stations

in the region. Po(h) and Pa(h) are observed and analytical dry probabilities,
respectively. Po(h) is calculated from the equation 3.6 amd(h)is calculated from
equation 4.2. Figure 5.10 shows the comparativer estatisticsE, and E, amongst

regions 35, 39, 40 and all regions for all aggregelevels and all months. In each cése
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andzy were fixed and was calculated from the Second Harmonic FourieileS€Gyasi-

Agyei,1999).
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Figure 5.10  Comparison ofE; and E, statistics for all months and all aggregation level

From the comparison it is evident that the averger statisticE, is less than 1.2% for
both criteria when all the stations are taken togetThe maximum error statistig, is

highest (15%) for the 6-hour aggregation level alking the month of February. A

41



further investigation of the histograms of eachth& maximum error statisti&, for all

stations at the 6 hour aggregation level and ferrttonth of February has been carried

out. Figure 5.11 shows both histograms.
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Figure 5.11  Histograms showing range o, for all stations at 6 hour aggregation and in the
month of February

From the histograms of Figure 5.11 it is eviderat the maximum error&, of 15% at

the two worst case scenarios constitute only 1%hef total frequency. Hence, it is
necessary to see the individual absolute errorsatbrdata points and find their

distribution in a histogram format for all statiohs see whether this is an isolated

phenomenon.

The individual absolute error is defined as:

Po(h) = PAD), 100 (5.8)
Po(h)

r—

where Po(h) and Pa(h) are observed and analytical dry probabilitiespeesvely.
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Figure 5.12  Histogram of the individual errorstatistic E' for all stations

The distribution of absolute errd’ in Figure 5.12 is clearly exponential which indes
the maximum error statisticE, of 15% at the two worst case scenarios is noivangr
factor in the model prediction of the dry probakiliThese are just some isolated cases
caused by one or two isolated stations which requiiore observations. Since this
research is limited to the rainfall data from ther&u of Meteorology, our observation is
also restricted to the same. As the bulk of theolaites errors ranges from 0 to 1.5, the
model prediction of the dry probability is ratheontrolled by the average error

statistics, .

Up to this stage model parametgrands; are considered fixed arad, a;, b, & andb,

are considered variable. TBg E, and E' statistics are based on this arrangement of

model parameters. Since we are looking to reduee ehor statistics of the dry

probability prediction as well as trying to redute number of parameters, three more
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arrangements of parameters have been chosen. rbnestatistics are calculated again for

the following arrangements:

* All the parameter®, 7, &, &, b1, & andb, are taken as variables for the joint

calibration of regions 35, 39 and 40.

» Parameters, andb, are taken out of the parameter space and the mamgai
parameterg, i, ay, &, by are taken as variables for the joint calibratibregions

35, 39 and 40.

» Parameters; andb; are taken out of the parameter space and the mamai

parameterg, 5, &, &, » are taken as variables for the joint calibratibregions

35, 39 and 40.

Figure 5.13 shows the comparison of EyeE, error statistics for all of the

abovementioned parameter arrangements.
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Figure 5.13  Comparison ofE; and E, error statistics for all months and all aggregationlevels
under different sets of parameter arrangements

From the comparison it is seen that the exclusibpavametersa, and b, from the
harmonic components of the parameteroduces similar error statistics as shown earlier

in Figure 5.10 for the joint calibration of all #e regions. On the other hand, exclusion of
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parametersa; andb; does not improve the error statistics a great deatompared to

Figure 5.10.

These findings open up the possibility of reduarighe number of parameters. Instead
of carrying out the joint calibration with parametg ands, as fixed andx, a, by, &, b,

as regional variables to calculate parameteve can now rely on the joint calibration
with parameterg, 5, ap, & andb; as variables with similar results. In order to e
the error statistics and reduce the number of petens further, the isolated station
causing the maximum error of 15% in both FigureD5ahd Figure 5.13 is taken out of
the joint calibration. The error statistics are coddted again for the following
arrangements:

* All the parameter®, 7, &, &, by, & andb, are taken as variables for the joint
calibration of regions 35, 39 and 40 while theasedl station causing maximum
error of 15% is omitted. This is a 7 parameterragesanent.

» Parameters, andb, are taken out of the parameter space and the mamgdive
parameterg, 5, &, &, b, are taken as variables for the joint calibratibregions
35, 39 and 40 while the isolated station causingimam error of 15% is
omitted.

e Parametersy, by, & andb, are taken out of the parameter space and the
remaining three parametefs » and g are taken as variablder the joint
calibration of regions 35, 39 and 40 while theasedl station causing maximum
error of 15% is omitted.

Figure 5.14 shows the comparison of EiegE, error statistics for all of the

abovementioned parameter arrangements.
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Figure 5.14 Comparison ofE1 and E2 error statistics for all months and all aggregatio levels

under different sets of parameter arrangements whe the isolated station
causing maximum error is omitted

It is now evident from Figure 5.14 that the usdlote parameters namefy;, » and &
gives a maximum error of 1.1% and 7% frandE, respectively. This is a significant
improvement in the error statistics as well asgmiicant reduction of the number of

parameters to calibrate.
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The order of harmonics for parameterwasinvestigated for first (7 parameter), second
(5 parameter) and zero (3 parameter) orders foQteensland regions by examining the
absolute percentage error defined in equation Bgure 5.15 shows that there is no
significant difference in the error statistics fbese three arrangements with an absolute

error being less than 10% for a non-exceedanceapitity of 99.9%.
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Figure 5.15  Absolute error plots for differen order of harmonics of parameter )

As it is evident from Figure 5.15 that using 3 paegers (i.e. zero order harmonics for
parametey), the seasonal effect is absent in parametétence y will simply refer to

a, hereafter. The distribution of the absolute enoth the zero order harmonics is

shown in Figure 5.16.
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Figure 5.16  Absolute error distributions forzero order harmonics of parameter

The three parameter arrangement for the joint &ldn of regions 35, 39 and 40 in the
State of Queensland was put in comparison with astralia wide joint parameter
calibration performed by Gyasi-Agyei and MahbubQ@2p0 The traditional Multinormal

Parameter Approximation and the Monte Carlo — baggaoximation algorithm known

as Metropolis Algorithm (Kuczera and Parent, 1988)e used for calibration. The Duan
et al. (1992) shuffled complex evolution of the lgdb probabilistic search option of the
NLFIT Bayesian non-linear regression software (Kara¢ 1994) was employed to refine
the posterior distribution of the multinormal apgiroation. The result of the calibrated

parameters for QLD regions is given in Table 5.5.
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Table 5.5 Statistics of calibrated parameters by mitinormal approximation and metropolis
algorithm for QLD regions

Multinormal Approximation Metropolis
Parameter Mean Stapd{:\rd Mean Standard
Deviation Deviation
B 0.200 0.011 0.166 0.010
n 0.510 0.013 0.473 0.012
y 0.090 0.002 0.082 0.003

For the purpose of comparison, the Australia wideameter values are reproduced from
Gyasi-Agyei and Mahbub (2007) in Table 5.6.

Table 5.6 Statistics of calibrated parameters by mitinormal approximation and metropolis
algorithm for Australia wide regions

Multinormal Approximation Metropolis
Parameter Standard Standard
Mean . Mean .
Deviation Deviation
0.273 0.012 0.278 0.013
n 0.746 0.019 0.756 0.022
y 0.092 0.002 0.093 0.002

From Tables 5.5 and 5.6 it is evident that thereasmuch difference in the parameter
calibration by the multinormal approximation ane tmetropolis algorithm. To see if
there is any significant change in their postemmment distributions, histogram analyses
were carried out for Queensland regions and cordpauiéh those of Australia wide
results from Gyasi-Agyei and Mahbub (2007). Figbir®7 shows the histograms for both

Queensland regions and the Australia wide stations.
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Figure 5.17  Histograms of the posterior meamalues for the QLD regions

The posterior distribution of mean is nearly norriwal both Queensland regions and the
whole of Australia as shown in Figure 5.17. Thisthe reason why there were little

differences between the means of calibrated pammet Tables 5.5 and 5.6.

51



The covariance between parameteys-S,7—y andf-y were also analysed for

Queensland regions and compared to that of Austwatie results from Gyasi-Agyei and

Mahbub (2007). Figure 5.18 shows the correlaticetavben the above parameters.
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Figure 5.18  Covariance between paramete®d — 3,/7 —y andf -y
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Even though strong correlations are evident in f€g6.18 individually for both
Queensland regions and the Australia wide datasengeters, the Queensland region fell
outside the Australia wide dataset. This suggdss the model parameters have to be
regionalised. Therefore, the parameters of Tablevbll be used as the binary chain

parameters for the Queensland region of Australia.

5.2  Variance Relationship Parameter Estimation folQueensland

This research has adopted the empirical scaliradioeship between the daily variance,
0Z(24) and the fine timescale variamr%(h) suggested by Gyasi-Agyei (1999). Gyasi-

Agyei and Mahbub (2007) established the empiricalisg relationship between daily

variance and the fine scale variance (6-minutepébected sites throughout Australia as:

02(0.1)= 0.0002722 (24" (5.9)

No apparent seasonality was observed in this d&taT® find out whether the data-
lengths have effects on similar variance relatigmsbr Queensland, the pluviograph
stations were ranked according to their monthlyadahgths. The variance relationships
were then separately established between the topattom 50% of the data to see if
there is any change in the spread of the stationtinsofrom the fitted power curves. The
following two figures show the separately estaldisivariance relationship for the ranked

data in Queensland.
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It is evident from Figures 5.19 and 5.20 that sgrefathe station-months from the fitted
power curves does not really vary with the dataytles Hence it was decided that the

data lengths of different months did not influetius variance relationship.

The scaling relationship for Queensland regions eaaspared to that of Australia wide.

Figure 5.21 shows that there is a subtle differdmeteveen the regionalised fit and the
Australia wide fit power curves. Both display sigrant scatter of many station months
from the fitted power curves. To minimise the se@tt seasonality was investigated for
the relationship between 6-minute and daily vamsnan the selected three regions

(region 35, 39 and 40) of Queensland.
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Figure 5.21  Fitted power curves between siximute and 24-hour variances in Queensland
and Australia wide

A distinctive pattern of scaled 6-minute varianoe2éd-hour variance with the 24-hour
variance was observed for the regions 35, 39 anih 4Queensland. Figure 5.22 shows

this pattern for both summer and winter seasons.
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Figure 5.22  Comparison of seasonal pattern$ scaled 6-minute variance with 24-hour variance
in the selected Queensland regions

The distinctive pattern of Fig. 5.22 does not fuljveal how the individual months are
affecting the variance relationship of Figure 5.Pfence an investigation of 6-minute
variance of each month in the selected Queenslkegidns is performed. The following

figures show the monthly variance patterns for @s&d.
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Figure 5.23  Comparison of QLD October Figure 5.24  Comparison of QLD November
patterns with whole QLD pagtrns with whole QLD station
station months months
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Figures 5.23 to 5.28 show that there exists a B8pedownward shift pattern in the

variance relationship between 6-minute and 24-lioumonths from October to March
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in Queensland regions. The following figures shbe tariance patterns for months from

April to September in the Queensland regions.
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Figures 5.29 to 5.34 show that the downward shithe variance relationship continues
in the winter months and at the end of the seas@tarts reversing back to the top
(Figures 5.34 and 5.23). These findings suggedtatl the use of a single variance
relationship power curve between the 6-minute adh@ur variance for the whole of
Queensland might cause problems in simulating ithee §cale variances in Queensland.
Hence, the seasonal approach associated with th@ne@ relationship proposed by
Mahbub et al. (2007) is adopted in this researdhis Beasonal approach has been
described in section 4.1.6 of the previous chapisrper equations 4.21 to 4.23, this

approach incorporates parametar comprising of coefficientsa,,a, and a, and
parameterb comprising of coefficientsh),bb and b, into the disaggregation model.

Parametera is defined as the scaling constant and paranteterdefined as the scaling
exponent in equation 4.21. The global optimisatiearch strategy (Duan et al., 1992) of

the Bayesian Non-Linear regression software NLA(Tiozera, 1994) is used again to
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determine these seasonal coefficient values forséiected Queensland regions. Table

5.7 shows the optimised coefficients for Queenslagibns determined by NLFIT.

Table 5.7 Seasonal parameter set for Queensland
Optimised values
Seasonal coefficients
for Queensland

2 0.001329

a 0.0007735

a, 0.0004887

by 0.5943

b -0.007314

b, -0.06866

Figures 5.35 and 5.36 show the seasonal variatbribe scaling constandand the

exponentb for the Queensland regions.
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Figure 5.35 Seasonal variation of the scafirconstant afor Queensland
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Figure 5.36  Seasonal variation of the scalirexponent b for Queensland

The scaling constard and the exponebt are determined by six seasonal coefficients:

a,, 8, a,, , b and b, according to equations 4.22 and 4.23.

The following figure shows the monthly variation tife downscaling relationship of
equation 4.21 for four equally spaced months in é@skand after the inclusion of

seasonality.
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Figure 5.37  Seasonal variation of the variamcrelationship for Queensland

From Figure 5.37 it is more evident that the vaz@relationship for the 6 minute and 24
hour variances for the Queensland regions followkar seasonal pattern. This research
will investigate the simulation results of variarmethe disaggregation model using both
seasonal and non-seasonal approach in its variatagonship. For the non-seasonal
approach, either the Australia wide parameter wbrehe Queensland parameter values
of Figure 5.21 can be used for Queensland. Fose¢hasonal approach, values from Table

5.7 will be used for Queensland.

5.3  Capping Parameter Estimation for Queensland

The capping technique, i.e. placing an upper liomtthe simulated timescale rainfall
depths, is required to tackle the possible overegion of the simulated timescale
rainfall depth during the disaggregation procedse €apping value is allowed to vary

depending on the daily depth between the rainfatians. According to equation 4.20 of

62



the previous chapter, the capping parameiensdB are to be estimated for each stations
in Queensland regions. Figures 5.38 to 5.40 reptethes capping relationship for 6-
minute timescale at Dingo, Rockhampton and Brishalnieh are situated in regions 35,
39 and 40 in Queensland, respectively. The paranvedees are calculated from the

fitted capping equations of the corresponding et

N
[y

L - all months ® bin average -
[ O December —fitted ]

N
o

=
o

=
o

log [ scaled six-min max depth (percent) ]

0.5 Dingo _ _
A=1.48 ' ]
B =0.28 ]

0.0 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 | 1 I—
-2 -1 0 1 2

log [ daily depth (mm) ]

Figure 5.38  Fitted Capping relationship at Digo, Queensland Australia
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Figure 5.39  Fitted Capping relationship at Rokhampton, Queensland Australia
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Figure 5.40 Fitted Capping relationship at Bisbane, Queensland Australia
No seasonality is observed in this scaled 6-minigigth versus daily depth relationship
as the months (for example, December in Fig. 58&) randomly distributed. The

logarithmic transformed daily depths were ranked divided into 30 groups (bins) of
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equal intervals and the mean and the standard taeviaf the logarithmic transformed
scaled 6-minute maximum depths within each bin vestenated. During the simulation
for Queensland regions, each wet day’'s cappingevalestimated by randomly drawing
a number from a normal distribution of the binned[$caled 6-minute maximum depth
(%)] points with the mean estimated by equatior048d the standard deviation set to
the maximum of the bins’ standard deviation. Thiéof@ng figures show that normal

distribution can be approximately estimated forlives in all three regions:
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Figure 5.41  Histogram of log[scaled 6-min (%) Figure 5.42 Histogram of log[scaled 6-
at Dingo; bin range: 0.74 - 0.877 min(%)]at Dingo; bin range:
.014-1.151
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Figures 5.41 to 5.46 validate the approximatiomnofmal distribution for the binned
log[scaled 6-min(%)] points in all three sitesla¢ selected regions of Queensland. From
this site-specific normal distribution, the maximuapping value for the simulated

rainfall depth will be randomly chosen by the modedble 5.8 shows the site- specific
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capping parameter values for all 65 selected stsiiio the three regions (35, 39 and 40)
in Queensland.

Table 5.8 Capping parameter values for selected Qaasland stations

BOM BOM
Parameter | Parameter| Standard Parameter | Parameter | Standard

Pluviometer- Pluviometer-

. A B Deviation . A B Deviation
station ID station ID
35000 1.52 0.33 0.37 40112 1.40 0.23 0.40
35025 1.48 0.28 0.37 40126 1.64 0.42 0.32
35029 1.39 0.23 0.42 40135 1.46 0.30 0.49
35059 1.43 0.27 0.39 40152 1.48 0.29 0.40
35065 1.46 0.26 0.38 40160 1.59 0.42 0.35
35069 1.58 0.36 0.36 40178 1.43 0.29 0.39
35070 1.44 0.29 0.40 40180 1.39 0.27 0.45
35090 1.60 0.45 0.45 40189 1.26 0.37 0.37
35104 1.50 0.29 0.34 40192 1.50 0.46 0.31
35147 1.55 0.33 0.38 40197 1.54 0.40 0.38
35267 1.50 0.32 0.36 40214 1.56 0.38 0.33
39006 1.40 0.25 0.36 40222 1.53 0.39 0.38
39069 1.38 0.26 0.40 40223 1.59 0.44 0.36
39070 1.44 0.30 0.37 40241 1.56 0.44 0.35
39083 1.42 0.23 0.37 40265 151 0.33 0.33
39090 1.57 0.42 0.35 40282 1.56 0.40 0.31
39123 1.55 0.32 0.33 40308 1.48 0.38 0.36
39128 1.61 0.38 0.32 40312 1.50 0.37 0.37
39140 1.46 0.33 0.38 40406 1.54 0.38 0.35
39297 1.50 0.26 0.41 40458 1.47 0.32 0.35
39303 1.61 0.36 0.37 40459 1.43 0.32 0.34
39314 1.71 0.43 0.31 40460 1.50 0.34 0.35
40004 1.54 0.38 0.50 40461 1.41 0.32 0.40
40014 151 0.38 0.41 40469 1.42 0.30 0.38
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BOM BOM

Parameter | Parameter| giandard Parameter | Parameter | siandard
Pluviometer- Pluviometer-

A B Deviation A B Deviation
station ID station ID

(contd.) (contd)) | (contd.) (contd.) (contd.) (contd )
(contd.) (contd.)
40019 1.31 0.20 0.47 40496 1.52 0.34 0.32
40059 1.54 0.37 0.31 40537 1.56 0.30 0.29
40062 1.44 0.39 0.35 40584 1.53 0.37 0.31
40063 1.49 0.38 0.37 40606 1.57 0.40 0.37
40082 1.46 0.29 0.36 40609 1.70 0.46 0.33
40093 1.56 0.41 0.37 40659 1.49 0.37 0.36
40094 1.48 0.39 0.40 40677 1.46 0.26 0.38
40106 1.57 0.43 0.37 40715 1.56 0.38 0.33
40111 1.50 0.34 0.39

Table 5.8 enables the use of the three parameighrastic disaggregation model at all the

selected stations around Queensland for the cappirppses.

5.4  Estimation of Autocorrelation for Queensland

For fine timescale simulation purposes, Gyasi-AgyEd99) and Gyasi-Agyei and

Mahbub (2007) suggested the use of a fixed auteledion, o (h) for Australia wide

due to the presence of strong correlation betweglneh lag autocorrelation and lag-1
autocorrelation. The Australia wide 6-minute lagiitocorrelation is suggested as 0.71
by Gyasi-Agyei and Mahbub (2007). For Queenslane,monthly mean values of the 6
minute lag-1 autocorrelation did not show any seabty (Figure 5.47). A constant value
of 0.73 was observed for Queensland for almosthallyear round. This research will
investigate the model performance using both thstialia wide autocorrelation value of

0.71 and the regionalised Queensland value of for7@ minute timescale simulation.
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Figure 5.47  Monthly autocorrelation in Queenisind

The next chapter will discuss on the application tké stochastic model and its

performance.
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