Studies on Wheel/Rail Contact – Impact Forces at Insulated Rail Joints

Tao Pang, B.Eng

A Thesis Submitted in Partial Fulfilment for the Award of the Degree of Master of Engineering

Centre for Railway Engineering
Central Queensland University
Australia

June 2007
ABSTRACT

To investigate the wheel/rail contact impact forces at insulated rail joints (IRJs), a three-dimensional finite element model and strain gauged experiments are employed and reported in this thesis. The 3D wheel/rail contact-impact FE model adopts a two-stage analysis strategy in which the wheel-IRJ railhead contact is first established in the static analysis and the results transferred to dynamic analysis for impact simulations. The explicit FE method was employed in the dynamic analysis. The Lagrange Multiplier method and the Penalty method for contact constraint enforcement were adopted for the static and dynamic analyses respectively.

The wheel/rail contact-impact in the vicinity of the end post is exhibited via numerical examples from the FE modelling. The wheel/rail contact impact mechanism is investigated. The strain gauged experiments which consist of a lab test and a field test are reported. The signature of the strain time series from the field test demonstrates a plausible record of the dynamic responses due to the wheel/rail contact impact. By using the experimental data, both the static and the dynamic FE models are validated.

It is found that the stiffness discontinuity of the IRJ structure causes a running surface geometry discontinuity during the wheel passages which then causes the impact in the vicinity of the end post. Through a series of sensitivity studies of several IRJ design parameters, it is shown that the IRJ performance can be effectively improved with optimised design parameters.
TABLE OF CONTENTS

Abstract ... i
Table of Contents ... ii
List of Figures ... vii
List of Tables .. xiv
List of Symbols ... xv
List of Acronyms ... xviii
Acknowledgements ... xix
Declaration ... xx
1. Introduction .. 1
 1.1. Aim and Objectives ... 2
 1.2. Scope and Limitations .. 2
 1.3. Thesis Structure ... 3
2. Review of Insulated Rail Joints (IRJs) ... 6
 2.1. Introduction .. 6
 2.2. Significance of IRJ ... 6
 2.3. Designs of IRJ .. 7
 2.4. Failure of IRJs: An International Perspective ... 13
 2.5. Wheel/rail Contact-Impact at IRJs ... 16
 2.5.1 Static wheel/rail contact simulations ... 16
 2.5.2 Dynamic wheel/rail contact simulations using rigid multibody
 dynamics ... 19
 2.5.3 Dynamic wheel/rail contact simulations using finite element
 method ... 22
2.6. A Hypothesis for the Failure of Australian IRJs

2.7. Summary

3. Theory of Contact-Impact

3.1. Introduction

3.2. Brief Review of Mechanics of Contact

- **3.2.1 Classical theories**
 - (a) Normal contact of elastic solids – Hertzian contact theory
 - (b) Non-Hertz normal contact of elastic bodies

- **3.2.2 Computational theories**
 - (a) Basics of finite element method
 - (b) Computational contact theory
 - (c) ALE Formulation

3.3. Review of Solution Methods for Finite Element Method

- **3.3.1 Algorithm for time-independent problems**
- **3.3.2 Algorithm for time-dependent problems**
 - (a) Explicit time integration
 - (b) Implicit time integration

3.4. Discussion of Contact Impact

3.5. Summary

4. Finite Element Modelling Strategies

4.1. Introduction

4.2. Complexities of Modelling IRJ

- **4.2.1 Geometry**
- **4.2.2 Material**
- **4.2.3 Boundary Conditions**
4.3. Strategy-1: Simplifications of Geometry Modelling .. 67
4.4. Strategy-2: Simplifications of Material Modelling ... 69
 4.4.1 Elasto-plastic steel zones ... 69
 4.4.2 Insulating material zones ... 70
4.5. Strategy-3: Simplifications of Boundary Conditions 70
 4.5.1 Idealisation of support system ... 71
 4.5.2 Elastic support ... 72
 4.5.3 Beam element to solid element connections 72
 4.5.4 Boundary conditions of the wheel .. 75
4.6. Strategy-4: Loading Strategy .. 76
4.7. Strategy-5: Wheel/Rail Contact Modelling .. 78
 4.7.1 Contact definition in static model ... 79
 4.7.2 Contact definition in dynamic analysis ... 81
4.8. Strategy-6: Meshing .. 81
4.9. Summary ... 87
5. FE Evaluation of Contact-Impact Forces ... 89
 5.1. Introduction .. 89
 5.2. Numerical Example: Typical Input Data ... 89
 5.3. Typical Results .. 92
 5.3.1 Results of static analysis ... 93
 5.3.2 Results of dynamic analysis ... 98
 (a) Contact forces ... 99
 (b) Contact pressures and dimensions .. 101
 (c) Stresses ... 107
 (d) Energies ... 111
5.4. Sensitivity Analyses of Design Parameters of IRJ .. 113
 5.4.1 Design cases considered ... 114
 5.4.2 Sensitivity studies ... 115
 (a) Effect of end post material bonding detail ... 116
 (b) Effect of gap size .. 117
 (c) Effect of support condition .. 119
 (d) Effect of joint bar length (number of bolts) .. 120
 (e) Effect of end post material .. 122
 (f) Effect of sleeper position ... 123
 5.4.3 Discussion of sensitivity study results ... 124
5.5. Summary .. 126

6. Strain Gauged IRJ Experiments .. 128
 6.1. Introduction .. 128
 6.2. Strain-Gauged IRJ Experimental Strategy .. 128
 6.3. Strain Gauge Positioning Strategy ... 130
 6.4. Preparation of Strain Gauged IRJ ... 134
 6.4.1 Selection of strain gauge rosette .. 134
 6.4.2 Installation of strain gauges on IRJ .. 135
 6.5. Lab Test of Strain Gauged IRJ .. 136
 6.5.1 Laboratory test setup ... 136
 6.5.2 Typical data .. 138
 6.6. Field Test of the Strain Gauged IRJ ... 141
 6.6.1 Field installation .. 141
 6.6.2 Typical data .. 142
6.7. Analysis of Field Data ... 145
 6.7.1 Traffic classification ... 145
 6.7.2 Vertical strain signature ... 146
6.8. Summary ... 149

7. Validation of the FE Model of IRJ 150
 7.1. Introduction .. 150
 7.2. Validation of Static FEA Model .. 150
 7.3. Validation of Dynamic FEA Model 153
 7.4. Summary ... 156

8. Summary & Conclusions ... 157
 8.1. Conclusions .. 158
 8.1.1 General conclusions .. 159
 8.1.2 Specific conclusions .. 160
 8.2. Recommendations .. 161

References ... 163
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Suspended IRJ</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Continuously Supported Insulated Joint</td>
<td>8</td>
</tr>
<tr>
<td>2.3. Discretely supported IRJ</td>
<td>9</td>
</tr>
<tr>
<td>2.4. Supported IRJ</td>
<td>9</td>
</tr>
<tr>
<td>2.5. Different joint bar designs</td>
<td>10</td>
</tr>
<tr>
<td>2.6. IRJ with 6-bolt joint bar</td>
<td>10</td>
</tr>
<tr>
<td>2.7. Types of Insulated Rail Joints</td>
<td>11</td>
</tr>
<tr>
<td>2.8. Novel design of IRJ in Canada</td>
<td>12</td>
</tr>
<tr>
<td>2.9. Ballasted Track</td>
<td>13</td>
</tr>
<tr>
<td>2.10. IRJ with failed glue bond</td>
<td>14</td>
</tr>
<tr>
<td>2.11. IRJ with end post crushed</td>
<td>14</td>
</tr>
<tr>
<td>2.12. Running surface defect of IRJ</td>
<td>15</td>
</tr>
<tr>
<td>2.13. Typical IRJ failure in Australian heavy haul networks</td>
<td>16</td>
</tr>
<tr>
<td>2.14. Wheel/IRJ contact impact hypothesis</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Contact between non-conforming solids</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Hertz contact foundation model</td>
<td>32</td>
</tr>
<tr>
<td>3.3 2D discrete plane with elements</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Two bodies in contact</td>
<td>43</td>
</tr>
</tbody>
</table>
3.5 Process of solving the contact boundary problem using Lagrange Multiplier method

4.1. Typical insulated rail joints assembly

4.2. 60kg Rail dimension

4.3. Joint bar dimensions

4.4. M24 Bolt dimensions

4.5 Geometry of wheel

4.6. Rail/Wheel vertical section alignment

4.7. Boundary condition of wheel and IRJ

4.8. Typical prestressed concrete sleeper arrangement

4.9. Rail effect length with deflection

4.10. Idealisation of the IRJ geometry

4.11. Wheel geometry simplification

4.12. Geometry of FE model

4.13. Elasto-plastic steel zone for wheel and IRJ

4.15. Sleeper support idealisation

4.16. One-layer rail elastic support model

4.17. Beam-solid element connection

4.18 Controlling nodes for rail section rotational DOFs

4.20 Schematic diagram of the full IRJ model 75

4.21 The wheel loading system 76

4.22 Bolt pretension load application 77

4.23 Wheel axle load and centrifugal force 78

4.24 Contact surfaces for wheel and IRJ 79

4.25 Contact surfaces initial adjustment 80

4.26 Wheel partition 82

4.27 Wheel meshing 83

4.28 Railhead zone of IRJ 84

4.29 Refined mesh for railhead zone of IRJ 84

4.30 Remaining part of IRJ 85

4.31 IRJ elastic zone meshing 86

4.32 Finite element meshing of the wheel-rail system 87

5.1 Typical wheel/rail static contact model of IRJ 90

5.2 Contact pressure distribution 93

5.3 Contact pressure distribution X-Y plot 95

5.4 Plastic energy history 96

5.5 Mesh in the contact zone 97

5.6 Contact pressure distribution of coarse mesh 97

5.7 Contact force history using Penalty method and Kinematic method 98
5.8. Rail/wheel contact force history

5.9. Measurement line on the top of railhead

5.10. IRJ vertical displacement with wheel passing over the joint gap

5.11. Contact pressure distribution (pre impact)

5.12. Contact pressure distribution (during impact)

5.13. Contact pressure distribution (post impact)

5.14. History of total area of contact

5.15. Time series of peak pressure P_0

5.16. Von-Mises stress distribution

5.17. Von Mises stress contour (top of rail view) prior to impact

5.18. Von Mises stress contour prior to impact

5.19. Von Mises stress contour (top of rail view) at impact

5.20. Von Mises stress contour at impact

5.21. Von Mises stress contour (top of rail view) post impact

5.22. Von Mises stress contour post impact

5.23. Kinetic energy time series

5.24. Plastic energy time series

5.25. Contact force history of Nylon66 and Steel end post material

5.26. IRJ design parameters examined

5.27. Contact force history of wheel pure rolling and pure sliding

5.28. Modelling of end post material bonding detail
5.29. Contact force history of glued and inserted joint

5.30. Modelling of gap size

5.31. Contact force history of 10mm and 5mm gap size

5.32. Contact force history of flexible and rigid support

5.33. 4-bolt and 6-bolt joint bar IRJ model

5.34. Contact force history of 4-bolt and 6-bolt joint bar

5.35. Illustration of sleeper spacing and joint bar length

5.36. Contact force history of different end post material

5.37. Position of sleepers

5.38. Contact force history of IRJs suspended or supported

5.39. Contact force history for case G05F4BFsus

6.1. Loading positions in lab test

6.2. Data recording system for the field test

6.3. Snap shots of the vertical strain distribution from the dynamic analysis

6.4. Strain gauge positions for E_{22} and E_{23} measurements

6.5. E_{33} distribution on the rail bottom

6.6. Strain gauge positions for E_{33} measurements

6.7. Strain gauge rosettes

6.8. Strain gauges stuck to the rails

6.9. Lab test setup
6.10. Loading equipments 137

6.11. Quarter-bridge routine for strain gauges 138

6.12. Illustration for position of strain gauges and load 139

6.13. Averaged vertical strain \(E_{22} \) 139

6.14. Averaged shear strain \(E_{23} \) 140

6.15. Longitudinal strain \(E_{33} \) 140

6.16. Installed strain gauged IRJ as a wagon is passing over 141

6.17. Vertical normal strain \(E_{22} \) history 142

6.18. Shear strain \(E_{23} \) history 143

6.19. Longitudinal strain \(E_{33} \) history 143

6.20. Averaged vertical normal strain \(E_{22} \) history 144

6.21. Averaged shear strain \(E_{23} \) history 144

6.22. Illustration of rollingstock travelling in field test 146

6.23. Zoom-in of vertical strain history for a wheel passage 147

6.24. Illustration of two peaks generating mechanism 147

6.25. Zoom-in of vertical strain history for a wheel passage transporting in an opposite direction 148

6.26. Illustration of one peak generating mechanism 148

7.1. Support system of static test 151

7.2. Positions of strain gauges and loadings 151
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3. Vertical normal strain E_{22} comparison of Strain Gauge 1/2</td>
<td>152</td>
</tr>
<tr>
<td>7.4. Vertical strain E_{22} comparison of Strain Gauge 3/4</td>
<td>153</td>
</tr>
<tr>
<td>7.5. Illustrations of strain gauge location and travelling direction</td>
<td>154</td>
</tr>
<tr>
<td>7.6. Vertical strain E_{22} comparison of Strain Gauge 3/4</td>
<td>155</td>
</tr>
<tr>
<td>7.7. Illustrations of strain gauge location and travelling direction</td>
<td>155</td>
</tr>
<tr>
<td>7.8. Vertical strain E_{22} comparison of Strain Gauge 3/4</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Mechanical properties of steel and insulation material</td>
<td>65</td>
</tr>
<tr>
<td>4.2 Mesh of wheel/IRJ contact model</td>
<td>86</td>
</tr>
<tr>
<td>5.1 Mechanical properties of steel and insulation material</td>
<td>91</td>
</tr>
<tr>
<td>5.2 Properties of the Supporting and Suspension system</td>
<td>92</td>
</tr>
<tr>
<td>5.3 HCT and FEA comparison</td>
<td>94</td>
</tr>
<tr>
<td>5.4 Sensitivity study plan</td>
<td>115</td>
</tr>
<tr>
<td>5.5 Mechanical properties of insulation material</td>
<td>122</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

MATHEMATICAL SYMBOLS

[] Rectangular or square matrix

[]^T Matrix transpose

[]^-1 Matrix inverse

∥∥ Norm of a matrix or a vector

. Time differentiation (over dot)

- Boundary value (over bar)

LATIN SYMBOLS

a Major axis of elliptical contact area

A Contact area

B Strain-displacement matrix

b Minor axis of elliptical contact area

C_d Material damping

c_o Stress wave propagation speed

D Elasticity matrix

E Young’s modulus

F Concentrated force

f Body force

f_b Boundary force

g Gap function of contact surfaces

G Shear modulus
Depth of Hertz elastic foundation

Identity matrix

System stiffness matrix

Stiffness matrix

Dimension of characteristic element

Mass matrix

Shape function

Normal vector to the contact surface

Normal contact pressure

Peak value of contact pressure at the centre of contact area

Tangential contact traction

Radius of curvature

Distance of loading point from the origin

Time

Displacement

Velocity

Contact body profile

Coordinate of rectangular Cartesian reference system

Semi angle of wedge and cone

Measures of material difference of contact bodies

Normal strain

Shear stain
\(\sigma \) Normal stress
\(\tau \) Shear stress
\(\rho \) Density
\(\xi \) Fraction of critical damping
\(\omega_{\text{max}} \) System frequency of highest mode
\(\lambda \) Lagrange multiplier
\(\zeta \) Integral variable of potential function
\(\nu \) Poison ratio of the material
\(\mu \) Friction coefficient
\(\nu \) Interpolation parameter for velocity
\(\vartheta \) Interpolation parameter for displacement
\(\Pi \) Energy function
\(\chi \) Penalty parameters
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimension</td>
</tr>
<tr>
<td>CRE</td>
<td>Centre for Railway Engineering</td>
</tr>
<tr>
<td>CQU</td>
<td>Central Queensland University</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>FE</td>
<td>Finite element</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite element analysis</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>HCT</td>
<td>Hertzian contact theory</td>
</tr>
<tr>
<td>HTL</td>
<td>Heavy Testing Laboratory</td>
</tr>
<tr>
<td>IRJ</td>
<td>Insulated rail joint</td>
</tr>
<tr>
<td>QR</td>
<td>Queensland Rail</td>
</tr>
<tr>
<td>RMD</td>
<td>Rigid multibody dynamics</td>
</tr>
</tbody>
</table>
I would like to thank all those people who have given me generous help and supports during the past two years.

Many thanks to my supervisor, A/Prof. Manicka Dhanasekar, director for Centre for Railway Engineering; I sincerely appreciated his sustained guide and support in both academic and personal way from the commencement to the completion of my master program.

I also would like to express my appreciation to the research staffs in Centre for Railway Engineering, Mr. Trevor Ashman, Mr. Grant Caynes, A/Prof. Colin Cole, Mr. Paul Boyd and many QR engineers who has made major contribution to the important and interesting experiment in this research.

Thanks to Mr. Tim McSweeney, Research Support Officer in Centre for Railway Engineering, for his generous help throughout my two years’ research and precious advices in the final stage of thesis writing.

The thesis was possible thanks to the scholarship awarded by the Centre for Railway Engineering, Central Queensland University, Australia RailCRC and Queensland Rail.

Special thankfulness to my parents, my girlfriend Saina and all my friends I met in Australia, only with your support, help and understanding I could accomplish this thesis.
DECLARATION

The work contained in this thesis is a direct result of the original work carried out by me and has not previously been submitted for the award of a degree or diploma at any other tertiary institution in Australia or Overseas

Signed: ___________________________ Date: 29th June, 2007

Tao Pang

Author